
C
 PROGRAMMING

C PROGRAMMING Page 2

Computer systems:
A Computer is an electronic device which performs operations such as accepts data
As an input, store the data, manipulate or process the data and produce the results anoutput.
Main task performed by a computer
• Accept the data
• Process or manipulate the data
• Display or store the result in the form of human understanding
• Store the data, instructions and results.

A computer system consists of hardware and software.

Computer hardware is the collection of physical elements that comprise a computer system.

Computer software is a collection of computer programs and related data that provides the
instructions for a computer what to do and how to do it. Software refers to one or more computer
programs and data held in the storage of the computer for some purpose

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 3

Basically computer software is of three main types

System Software: System software is responsible for managing a variety of
independent hardware components, so that they can work together. Its purpose is
to unburden the application software programmer from the often complex details of
the particular computer being used, including such accessories as communications
devices, printers, device readers, displays and keyboards, and also to partition the
computer's resources such as memory and processor time in a safe and stable
manner.
• Device drivers
• Operating systems
• Servers
• Utilities
• Window systems
Programming Software: Programming Software usually provides tools to assist a
programmer in writing computer programs, and software using different
programming languages in a more convenient way. The tools include:
• Compilers
• Debuggers
• Interpreters
• Linkers
• Text editors
Application Software: Application software is developed to aid in any task that
benefits from computation. It is a broad category, and encompasses Software of
many kinds, including the internet browser being used to display this page. This
category includes:
• Business software
• Computer aided design
• Databases
• Decision making software
• Educational software
• Image editing

Computing Environment:

Computing Environment is a collection of computers / machines, software, and networks that
support the processing and exchange of electronic information meant to support various types of
computing solutions.

Types of Computing Environments:
 Personal Computing Environment

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 4

 Client Server Environment
 Time sharing Environment
 Distributed Environment

Personal Computing Environment:
All of the computer hardware components are tied together in our personal
computer. A personal computer (PC) is a computer whose original sales price,
size, and capabilities make it useful for individuals, and intended to be operated
directly by an end user, with no intervening computer operator. People generally
relate this term with Microsoft‟s Windows Operating system. Personal computers
generally run on Windows, Mac or some version of Linux operating system.
Desktop: Desktop computer is just another version of Personal Computer intended
for regular use from a single use. A computer that can be fit on a desk can also be
called as desktop.

Time-Sharing Environment:
In the time-sharing environment, all computing must be done by the central computer. The
central computer the shared resources, it manage the shared data and printing. Employees in
large companies often work in what is known as time sharing environment. In the time sharing
environment, many users are connected to one or more computers. These computers may be mini
computers and central mainframes. In this environment the output devices, auxiliary storage
devices are shared by all the users. TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 5

Client/Server Environment
Client/Server computing environment splits the computing function between a
central computer and user‟s computers. The users are given personal computers or
work stations so that some of the computation responsibility can be moved from
the central computer and assigned to the workstations. In the client/server
environment the users micro computers or work stations are called the client. The
central computer which may be a powerful micro computer, minicomputer or
central mainframe system is known as server.

Distributed Computing Environment

A distributed computing environment provides a seamless integration of computing
functions between different servers and clients. The internet provides connectivity
to different servers throughout the world. This environment provides reliable,
scalable and highly available network.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 6

In order to communicate with the computer user also needs to have a language that
should be understood by the computer. For this purpose, different languages are
developed for performing different types of work on the computer. Basically, languages
are divided into two categories according to their interpretation.

1. Low Level Languages.

2. High Level Languages.

Low Level Languages Low level computer languages are machine codes or close to it.
Computer cannot understand
instructions given in high level languages or in English. It can only understand and execute
instructions given in the form of machine language i.e. language of 0 and 1. There are two
types
of low level languages:  Machine Language.

 Assembly Language
Machine Language: It is the lowest and most elementary level of Programming language and
was the first type of programming language to be Developed. Machine Language is basically the
only language which computer Can understand. In fact, a manufacturer designs a computer to
obey just one Language, its machine code, which is represented inside the computer by a String
of binary digits (bits) 0 and 1. The symbol 0 stands for the absence of Electric pulse and 1 for the

COMPUTER LANGUAGES

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 7

Advantages of Machine Language i) It makes fast and efficient use of the computer.

ii) It requires no translator to translate the code i.e. Directly understood by the computer

Disadvantages of Machine Language:

i) All operation codes have to be remembered

iv) These languages are machine dependent i.e. a particular

Machine language can be used on only one type of computer

Assembly Language It was developed to overcome some of the many inconveniences of
machine language. This is
another low level but a very important language in which operation codes and operands are
given
in the form of alphanumeric symbols instead of 0‟s and l‟s. These alphanumeric symbols
will be
known as mnemonic codes and can have maximum up to 5 letter combination e.g.
ADD for
addition, SUB for subtraction, START,LABEL etc. Because of this feature it is also known
as
„Symbolic Programming Language‟. This language is also very difficult and needs a lot of
practice to master it because very small

English support is given to this language. The language mainly helps in compiler

orientations.
The instructions of the Assembly language will also be converted to machine codes bylanguage
translator to be executed by the computer.

presence of an electric pulse . Since a computer is Capable of recognizing electric signals,
therefore, it understand machine Language.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 8

Advantages of Assembly Language i) It is easier to understand and use as compared to
machine language.

ii)It is easy to locate and correct errors.

iii) It is modified easily

Disadvantages of Assembly Language
i) Like machine language it is also machine dependent.

ii) Since it is machine dependent therefore programmer Should have the knowledge of the
hardware also.
High Level Languages
High level computer languages give formats close to English language and the purpose of
developing high level languages is to enable people to write programs easily and in their
own
native language environment (English). High-level languages are basically symbolic
languages
that use English words and/or mathematical symbols rather than mnemonic codes. Each
instruction in the high level language is translated into many machine language
instructions thus
showing one-to-many translation

Types of High Level Languages
Many languages have been developed for achieving different variety of tasks, some are
fairly
specialized others are quite general purpose.

These are categorized according to their use as

a) Algebraic Formula-Type Processing. These languages are oriented towards the
computational procedures for solving mathematical and statistical problem

Examples are





BASIC (Beginners All Purpose Symbolic Instruction Code).
FORTRAN (Formula Translation).
PL/I (Programming Language, Version 1).
ALGOL (Algorithmic Language).

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 9

Advantages of High Level Language

 APL (A Programming Language).
b) Business Data Processing:

 These languages emphasize their capabilities for maintaining data processing procedures
and files handling problems. Examples are:




COBOL (Common Business Oriented Language).
RPG (Report Program Generator

b) String and List Processing: These are used for string manipulation including search for
patterns, inserting and deleting characters. Examples are:




LISP (List Processing).
Prolog (Program in Logic).

Object Oriented Programming Language

In OOP, the computer program is divided into objects. Examples are:




C++
Java

e) Visual programming language: these are designed for building Windows-based applications
Examples are:





Visual Basic
Visual Java
Visual C

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 10

Following are the advantages of a high level language:






User-friendly
Similar to English with vocabulary of words and symbols
Therefore it is easier to learn.
They are easier to maintain.

Disadvantages of High Level Language

 A high-level language has to be translated into the machine language by a translator and
thus a price in computer time is paid.
The object code generated by a translator might be inefficient Compared to an equivalent
assembly language program



Creating and Running Programs:
There are four steps in this process.
1. Writing and editing the program using Text editor (source code).
2. Compile the program using any C compiler.(.bak file)
3. Linking the program with the required library modules(object file)
4. Executing the program. (.Exe file)
Creating and Editing a C Program in C Programming Language compiler:
Writing or creating and editing source program is a first step in c language. Source
code is written in c programming language according to the type of problem or
requirement, in any text editor.
Saving C Program in C Programming Language: Source code is saved on the
secondary storage. Source code is saved as text file. The extension of file must be
".c". Example the file name is "learn c programming language.c"

Compiling C program in C Programming Language: Computer does not
understand c programming language. It understands only 0 and 1 means machine
language. So c programming language code is converted into machine language.
The process of converting source code in to machine code is called compiling.
Compiler is a program that compiles source code. Compiler also detects errors in source
program. If compiling is successful source program is converted into object program. Object
program is saved on disk. The extension of file is ".obj"
Linking in C programming Language: There are many built in functions
available in c programming language. These functions are also called library
functions. These functions are stored in different header files.

Loading program: The process of transferring a program from secondary storage
to main memory for execution is called loading a program. A program called loader

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 11

does loading.
Executing program: Execution is the last step. In this step program starts
execution. Its instructions start working and output of the program display on the
screen.

Pseudocode: is an artificial and informal language that helps programmers develop
algorithms. Pseudocode is very similar to everyday English.

An algorithm is a description of a procedure which terminates with a result. Algorithm is
a step-by-step method of solving a problem.

Properties of an Algorithm:
1) Finiteness: - An algorithm terminates after a finite numbers of steps.
2) Definiteness: - Each step in algorithm is unambiguous. This means that the action
specified by the step cannot be interpreted (explain the meaning of) in multiple ways& can
be performed without any confusion.
3) Input: - An algorithm accepts zero or more inputs
4) Output:- An algorithm should produce at least one output.

Algorithm:
TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 12

The pictorial representation of algorithm is called flowchart.

Uses of flow chart:

1 : flow chart helps to understand the program easily.

2 : as different symbols are used to specify the type of operation performed, it is easier to
understand the complex programs with the help of flowcharts.

5) Effectiveness: - It consists of basic instructions that are realizable. This means that the
instructions can be performed by using the given inputs in a finite amount of time.

Writing an algorithm
An algorithm can be written in English, like sentences and using mathematical
formulas. Sometimes algorithm written in English like language is Pseudo code.
Examples
1) Finding the average of three numbers
1. Let a,b,c are three integers
2. Let d is float
3. Display the message “Enter any three integers:”
4. Read three integers and stores in a,b,c
5. Compute the d = (a+b+c)/3.0
6. Display “The avg is:” , d
7. End.


 Example 1: Write an algorithm to determine a student‟s final grade and indicate whether
it is passing or failing. The final grade is calculated as the average of four marks.

Pseudocode

::

 

 Input a set of 4 marksCalculate their average by summing and dividing by 4if average is below 50

Print “FAIL”

Print “PASS”
 Detailed Algorithm :
else



 Step 1:
Step 2:
Step 3:

Input M1,M2,M3,M4
GRADE  (M1+M2+M3+M4)/4
if (GRADE < 50) then

Print “FAIL”

Print “PASS” elseendif

Flowcharts :

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 13

5

6

 Flowchart Symbols

S.NO

1

Description Flowlines : These are the left to right

or top to
bottom lines connection symbols. These lines
shows the flow of control through the program.

Terminal Symbol : The oval shaped symbol
always begins and ends the flowchart. Every
flow chart starting and ending symbol is
terminal symbol.
Input / Output symbol : The parallelogram is
used for both input (Read) and Output (Write)
is called I/O symbol. This symbol is used to
denote any function of an I/O device in the
program. Process Symbol : The rectangle symbol

is called
process symbol. It is used for calculations and
initialization of memory locations.

2

3

4

Decision symbol : The diamond shaped symbol
is called decision symbol. This box is used for
decision making. There will be always two exists
from a decision symbol one is labeled YES and
other labeled NO.

Connectors : The connector symbol is
represented by a circle. Whenever a complex
flowchart is morethan one page, in such a
situation, the connector symbols are used to
connect the flowchart.

Symbols

Start

End

Algorithm to find whether a number even or odd:
Step1: Begin
Step2: Take a number
Step3: if the number is divisible by2 then

Step1: START
Step2: Read num
Step3: if(num%2=0) then

print that number is even print num is even
otherwise print that number is odd otherwise

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 14

Step4: End
(Algorithm in natural language)

FLOWCHART :

System Development:

 print num is odd
Step4: STOP

(Algorithm by using pseudo code)

If

print num print num TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 15

Systems Requirements

Analysis

Design

Coding

System Test

Maintenance

1. Statement of Problem

a) Working with existing system and using proper questionnaire, the problem should be
explained
clearly.
b) What inputs are available, what outputs are required and what is needed for creating workable
solution, should be understood clearly.

Or

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 16

It was developed to overcome the problems of previous languages such as B, BCPL etc.

Initially, C language was developed to be used in UNIX operating system.

Features of C

2. Analysis a) The method of solutions to solve the problem can be identified. b) We also
judge that which method gives best results among different methods of solution.

3. Design
a) Algorithms and flow charts will be prepared.
b) Focus on data, architecture, user interfaces and program components.

4. System Test
The algorithms and flow charts developed in the previous steps are converted into actual
programs in the high level languages like C.

a. Compilation
The process of translating the program into machine code is called as Compilation.Syntactic
errors are found quickly at the time of compiling the program. These errors occur due

to the
usage of wrong syntaxes for the statements.
Eg: x=a*y+b
There is a syntax error in this statement, since, each and every statement in C languageends with
a semicolon (;).

b. Execution
The next step is Program execution. In this phase, we may encounter two types of errors.
Runtime Errors: these errors occur during the execution of the program and terminate the
program abnormally.
Logical Errors: these errors occur due to incorrect usage of the instructions in the program.

These
errors are neither detected during compilation or execution nor cause any stoppage to the
program execution but produces incorrect output.

5. Maintenance
We are maintenance the software by updating the information, providing the security andlicense
for the software.

What is C?
C is a programming language developed at AT & T‟s Bell Laboratories of USA in 1972. It
was designed and written by Dennis Ritche. Dennis Ritchie is known as the
founder of c
language.

1. Portability or machine independent

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 17

2. Sound and versatile language 3.
Fast program execution. 4. An
extendible language. 5. Tends to
be a structured language.

Historical developments of C(Background)
Year
1960

1967

Language

ALGOL

BCPL

1970 B

1972 C

Developed by Remarks

International committee Too general, too abstract

Martin
Cambridge university

Richards at Could deal with only specific
problems

Ken Thompson at AT & Could deal with only specific

T
Dennis Ritche at AT & T

problems
Lost generality of BCPL and B
restored

General Structure of a C program:

/* Documentation section */
/* Link section */
/* Definition section */
/* Global declaration section */
main()
{
Declaration part
Executable part (statements)
}
/* Sub-program section */

The documentation section is used for displaying any information about the
program like the purpose of the program, name of the author, date and time written
etc, and this section should be enclosed within comment lines. The statements in
the documentation section are ignored by the compiler.
 The link section consists of the inclusion of header files.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 18






The definition section consists of macro definitions, defining constants etc,.
Anything declared in the global declaration section is accessible throughout

the program, i.e. accessible to all the functions in the program.
main() function is mandatory for any program and it includes two parts, the

declaration part and the executable part.


The last section, i.e. sub-program section is optional and used when we require
including user defined functions in the program.

First C Program
Before starting the abcd of C language, you need to learn how to write, compile and run the first
c program.

To write the first c program, open the C console and write the following code:

1
.
2
.
3
.
4
.
5
.
6
.

#include <stdio.h>
#include <conio.h>
void main(){
printf("Hello C Language");
getch();
}
#include <stdio.h> includes the standard input output library functions. The printf() function
is defined in stdio.h .
#include <conio.h> includes the console input output library functions. The getch() function is
defined in conio.h file.
void main() The main() function is the entry point of every program in c language. The void
keyword specifies that it returns no value.
printf() The printf() function is used to print data on the console.

getch() The getch() function asks for a single character. Until you press any key, it blocks the
screen.

C TOKENS: The smallest individual units are known as tokens. C has six types of tokens.

1: Identifiers

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 19

Ex : Valid Invalid

STDNAME

SUB

TOT_MARKS

_TEMP

Y2K

Return

$stay

1RECORD

STD NAME.

1. An Identifier can only have alphanumeric characters(a-z , A-Z , 0-9) and underscore(_
).

2. The first character of an identifier can only contain alphabet(a-z , A-Z) or underscore (_
).

3. Identifiers are also case sensitive in C. For example name and Name are two different
identifier in C.

4. Keywords are not allowed to be used as Identifiers.

5. No special characters, such as semicolon, period, whitespaces, slash or comma are
permitted to be used in or as Identifier.

6. C‟ compiler recognizes only the first 31 characters of an identifiers.

 2: Keywords

3: Constants

4: Strings

5: Special Symbols

6: Operators

Identifiers:
Identifiers refer to the names of variables, constants, functions and arrays. These are user-defined
names is called Identifiers. These identifier are defined against a set of rules.
Rules for an Identifier

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 20

Note:

There are 4 types of data types in C language.

 Keywords we cannot use it as a variable name, constant name etc.

 To store data the program must reserve space which is done using datatype. A
datatype is a keyword/predefined instruction used for allocating memory for data. A
data type specifies the type of data that a variable can store such as integer, floating,
character etc. It used for declaring/defining variables or functions of different types
before to use in a program.

 Keywords: A keyword is a reserved word. All keywords have fixed meaning
that means we
cannot change. Keywords serve as basic building blocks for program statements. All
keywords must be written in lowercase. A list of 32 keywords in c language is given
below: auto

const

double

float

int

signed

struct

unsigned

break case char

do

extern

continue

enum

for

long

short

switch

default

else

goto

return

static

typedef

if

register

sizeof

union

while void volatile

Data Types/Types:

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 21

Type

char or signed char

unsigned char

 Types

Basic Data Type

Derived Data Type

Enumeration Data Type

Void Data Type

Size

(bytes) 1 1

Range

-128 to 127

0 to 255

 Data Types

int, char, float, double

array, pointer, structure, union

enum

void

Control String

%c %c

The basic data types are integer-based and floating-point based. C language supports both
signed and unsigned literals. The memory size of basic data types may change according
to 32 or 64 bit operating system. Let‟s see the basic data types. Its size is given according
to 32 bit architecture.
Size and Ranges of Data Types with Type Qualifiers

Note: We call Basic or Primary data type.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 22

int or signed int

unsigned int short int or

signed short
int
unsigned short int

long int or signed long
int

unsigned long int

float

double

long double

2

2

1

1

4

4

4

8

10

-32768 to 32767

0 to 65535

-128 to 127

0 to 4294967295

3.4E-38 to 3.4E+38

1.7E-308 to 1.7E+308

3.4E-4932 to 1.1E+4932

0 to 255

-2147483648 to 2147483647

%d or %i

%u

%d or %i

%d or %i

%ld

%lu

%f or %g

%lf

%Lf

A variable is a name of memory location. It is used to store data. Variables are
changeable, we can change value of a variable during execution of a program. . It can
be reused many times.

Note: Variable are nothing but identifiers.

Variables

1. A variable name contains maximum of 30 characters/ Variable
name must be upto 8 characters.

2. A variable name includes alphabets and numbers, but it must start
with an alphabet.

3. It cannot accept any special characters, blank spaces except under
score(_).

4. It should not be a reserved word.

Ex :
StudentName

i rank1 MAX min Student_name
class_mark

Rules to write variable names: TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 23

Constants refer to fixed values that do not change during the execution of a program.

Declaration of Variables : A variable can be used to store a value of any
data type. The
declaration of variables must be done before they are used in the program. The general
format for declaring a variable.

Syntax : data_type variable-1,variable-2,------, variable-n; Variables are separated by commas and declaration statement ends with a semicolon.

Ex : int x,y,z;
float a,b;
char m,n;

Assigning values to variables : values can be assigned to variables using the assignm
operator (=). The general format statement is :

Syntax : variable = constant;

Ex : x=100;
a= 12.25;
m=‟f‟;

we can also assign a value to a variable at the time of the variable is declared. The general format
of declaring and assigning value to a variable is :

Syntax : data_type variable = constant;

Ex ; int x=100;
float a=12.25;
char m=‟f‟;

Types of Variables in C

There are many types of variables in c:

1. local variable
2. global variable
3. static variable

Note: constants are also called literals.

Constants

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 24

Integer Constants

Numeric Constants

Real Constants

CONSTANTS

.

Single Character Constants

Character Constants

String Constants

C supports several kinds of constants

An integer constant is a numeric constant (associated with number) without any fractional or
exponential part. There are three types of integer constants in C programming:





decimal constant(base 10)
octal constant(base 8)
hexadecimal constant(base 16)

For example:

Decimal constants: 0, -9, 22 etc
Octal constants: 021, 077, 033 etc
Hexadecimal constants: 0x7f, 0x2a, 0x521 etc

In C programming, octal constant starts with a 0 and hexadecimal constant starts with a
0x.







TYPES OF C CONSTANT:
1
.
2
.
3
.
4
.
5
.

Integer constants
Real or Floating point constants
Character constants
String constants
Backslash character constants

Integer constants:

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 25

Floating point/Real constants:
A floating point constant is a numeric constant that has either a fractional form or an exponent
form. For example:

1: Decimal Integer : the rules for represent decimal integer.

a) Decimal Integer value which consist of digits from 0-9.
b) Decimal Integer value with base 10.
c) Decimal Integer should not prefix with 0.
d) It allows only sign (+,-).
e) No special character allowed in this integer.

Ex : valid invalid

7

77

$77

077

+77

-77

7,777

2 : Octal : An integer constants with base 8 is called octal. These rules are :

a) it consist of digits from 0 to 7.
b) It should prefix with 0.
c) It allows sign (+,-).
d) No special character is allowed.

EX : VALID INVALID
0123
+0123
-0123

123 -> it because no prefix with 0
0128 -> because digits from 0 to 7.

3 : Hexadecimal : An integer constant with base value 16 is called Hexadecimal.

a) It consist of digits from 0-9,a-f(capital letters & small leters.

Ex : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
b) it should prefix with 0X or 0x.
c) it allows sign (+,-).
d) No special character is allowed.

EX : OX1a, ox2f

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 26

-2.0

0.0000234

-0.22E-5

Single Character Constant : A character constant is either a single alphabet, a single digit, a
single special symbol enclosed within single inverted commas.

a) it is value represent in „ „ (single quote).
b) The maximam length of a character constant can be 1 character.

EX : VALID INVALID
„a‟ “12”

Note: E-5 = 10-5

Real Constants : Real constant is base 10 number, which is represented in decimal 0r
scientific/exponential notation.
Real Notation : The real notation is represented by an integer followed by a decimal point and
the fractional(decimal) part. It is possible to omit digits before or after the decimal point.

Ex : 15.25
.75
30

-9.52
-92
+.94

Scientific/Exponential Notation: The general form of Scientific/Exponential notation is

mantisha e exponent

The mantisha is either a real/floating point number expressed in decimal notation or an integer
and the exponent is an integer number with an optional sign. The character e separating the
mantisha and the exponent can be written in either lowercase or uppercase.

Ex : 1.5E-2
100e+3
-2.05e2

Character Constant:

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 27

 „A‟ „ab‟
String constant : A string constant is a sequence of characters enclosed in double quote, the
characters may be letters, numbers, special characters and blank space etc

EX : “rama” , “a” , “+123” , “1-/a”

"good"

""

"

"x"

"Earth is round\n"

//string constant

//null string constant

" //string constant of six white space

//string constant having single character.

//prints string with newline

Escape characters or backslash characters:

a) \n newline
b)
c)
d) \v

\r carriage return
\t tab

vertical tab
backspace
form feed (page feed)
alert (beep)

e)
f) \f
g) \a
h) \‟

\b

single quote(„)
double quote(“)
Question mark (?)
backslash (\)

i)
j) \?

\”

k) \\

Two ways to define constant in C
There are two ways to define constant in C programming. 1. const keyword

2. #define preprocessor
3.

1) C const keyword
The const keyword is used to define constant in C programming.

1. const float PI=3.14;
Now, the value of PI variable can't be changed.

1. #include <stdio.h>
2. #include <conio.h>
3. void main(){
4. const float PI=3.14;
5. clrscr();
6. printf("The value of PI is: %f",PI);

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 28

Standard input stdin Keyboard

C programming treats all the devices as files. So devices such as the display are
addressed in the same way as files and the following three files are automatically opened
when a program executes to provide access to the keyboard and screen.

Standard File File Pointer Device

7. getch();
8. }

Output:
The value of PI is: 3.140000

2) C #define preprocessor
The #define preprocessor is also used to define constant.
C#define
The #define preprocessor directive is used to define constant or micro substitution. It can use any
basic data type.
Syntax:
#define token value
Let's see an example of #define to define a constant.
#include <stdio.h>

1. #define PI 3.14
2. main() {
3.
4. }

printf("%f",PI);

Output:
3.140000

Formatted and Unformatted Console I/O Functions.

Input / Output (I/O) Functions
: In „C‟ language, two types of Input/Output functions are
available, and all input and output operations are carried out through function calls. Several
functions are available for input / output operations in „C‟. These functions are collectively
known as the standard i/o library.
Input: In any programming language input means to feed some data into program. This can be
given in the form of file or from command line.
Output: In any programming language output means to display some data on screen, printer or
in any file.
The Standard Files
TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 29

Formated I/O Functions

Input Output

scanf()

fscanf()

print()

fprintf()

I / O Functions

getch()

getche()

Unformated I/O Functions

Input Output

getc()

getchar()

gets()

putc()

putchar()

Standard error

Standard output

stderr

stdout

Input / Output functions are classified into two types

Screen

Your screen

. : formatted I/O functions operates on various types of data.

1 : printf() : output data or result of an operation can be displayed from

the computer to a
standard output device using the library function printf(). This function is used to print any
combination of data. Syntax : printf(“control string “, variable1, variable2, -----------,

variablen);
Ex : printf(“%d”,3977); // Output: 3977

printf() statement another syntax :
Syntax : printf(“fomating string”);

Formating string : it prints all the character given in doublequotes (“

“) except formatting
specifier.

 Formated I/O Functions

puts()

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 30

Ex : printf(“ hello “);-> hello
printf(“a”); -> a
printf(“%d”, a); -> a value
printf(“%d”); -> no display

scanf() : input data can be entered into the computer using the standard input „C‟ library
function called scanf(). This function is used to enter any combination of input.

Syntax : scanf(“control string “,&var1, &var2,----, &varn);

The scanf() function is used to read information from the standard input device (keyboard).

Ex : scanf(“ %d “,&a);-> hello

Each variable name (argument) must be preceeded by an ampersand (&). The (&) symbol gives
the meaning “address of “ the variable.
Unformatted I/O functions:

a) Character I/O
b) String I/O

a) character I/O:

1. getchar(): Used to read a character from the standard input
2. putchar(): Used to display a character to standard output
3. getch() and getche(): these are used to take the any alpha numeric characters
from the standard input

getche() read and display the character
getch() only read the single character but not display

4. putch(): Used to display any alpha numeric characters to standard output

a) String I/O:

1. gets(): Used for accepting any string from the standard input(stdin)
eg:gets()

2. puts(): Used to display a string or character array Eg:puts() 3.
Cgets():read a string from the console eg; cgets(char *st)
4. Cputs():display the string to the console eg; cputs(char *st)

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 31

OPERATORS AND EXPRESSIONS:
Operators : An operator is a Symbol that performs an operation. An operators acts some
variables are called operands to get the desired result.

Ex : a+b;
Where a,b are operands and + is the operator.

Types of Operator :
1) Arithmetic Operators.
2) Relational Operators.
3) Logical Operators.
4) Assignment Operators.
5). Unary Operators.
6) Conditional Operators.
7) Special Operators.
8) Bitwise Operators.
9) Shift Operators.

Arithmetic Operators
An arithmetic operator performs mathematical operations such as addition, subtraction and
multiplication on numerical values (constants and variables).
C Program to demonstrate the working of arithmetic operators
#include <stdio.h>
void main()
{

int a = 9,b = 4, c;
c = a+b;
printf("a+b = %d \n",c);
c = a-b;
printf("a-b = %d \n",c);
c = a*b;
printf("a*b = %d \n",c);
c=a/b;
printf("a/b = %d \n",c);
c=a%b;
printf("Remainder when a divided by b = %d \n",c);

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 32

Output
a+b = 13
a-b = 5
a*b = 36
a/b = 2
Remainder when a divided by b=1

Relational Operators. A relational operator checks the relationship between two opera
If the relation is true, it returns 1; if the relation is false, it returns value 0. Operands may be variables, constants or expressions.

Relational operators are used in decision making and loops.

Operator
<
< =
>
> =
= =
!=

Meaning
is less than
is less than or equal to
is greater than
is greater than or equal to
is equal to
is not equal to

Example
2<9
2 < = 2
2 > 9
3 > = 2
2 = = 3
2!=2

Return value
1
1
0
1
0
0

// C Program to demonstrate the working of relational operators

#include <stdio.h>

int main()

{

int a = 5, b = 5, c = 10;

printf("%d == %d = %d \n", a, b, a == b); // true

printf("%d == %d = %d \n", a, c, a == c); // false

printf("%d > %d = %d \n", a, b, a > b); //false

printf("%d > %d = %d \n", a, c, a > c); //false

TechByWebCoder

@techbywebcoder

https://www.programiz.com/c-programming/c-if-else-statement
https://www.programiz.com/c-programming/c-if-else-statement
https://www.programiz.com/c-programming/c-if-else-statement
https://www.programiz.com/c-programming/c-for-loop
https://www.programiz.com/c-programming/c-for-loop
https://www.programiz.com/c-programming/c-for-loop

C PROGRAMMING Page 33

 printf("%d < %d = %d \n", a, b, a < b); //false

printf("%d < %d = %d \n", a, c, a < c); //true

printf("%d != %d = %d \n", a, b, a != b); //false

printf("%d != %d = %d \n", a, c, a != c); //true

printf("%d >= %d = %d \n", a, b, a >= b); //true

printf("%d >= %d = %d \n", a, c, a >= c); //false

printf("%d <= %d = %d \n", a, b, a <= b); //true

printf("%d <= %d = %d \n", a, c, a <= c); //true

return 0;

}

Output

5 == 5 = 1

5 == 10 = 0

5 > 5 = 0

5 > 10 = 0

5 < 5 = 0

5 < 10 = 1

5 != 5 = 0

5 != 10 = 1

5 >= 5 = 1

5 >= 10 = 0

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 34

5 <= 5 = 1

5 <= 10 = 1

These operators are used to combine the results of two or more conditions. An expression
containing logical operator returns either 0 or 1 depending upon whether expression
results true or false. Logical operators are commonly used in decision making in C
programming.

Operator
&&
||
!

Meaning
Logical AND
Logical OR
Logical NOT

Example
(9>2)&&(17>2)
(9>2) || (17 = = 7)
29!=29

Return value
1
1
0

Logical AND : If any one condition false the complete condition becomes false.

Truth Table
Op1
true
true
false
false

Op2
true
false
true
false

Op1 && Op2
true
false
false
false

Logical OR : If any one condition true the complete condition becomes true.

Truth Table
Op1
true
true
false
false

Op2
true
false
true
false

Op1 // Op2
true
true
true
false

Logical Not : This operator reverses the value of the expression it operates on i.e, it makes a
true expression false and false expression true.

Op1
true
false

Op1 !
false
true

// C Program to demonstrate the working of logical operators

#include <stdio.h>

Logical Operators.

TechByWebCoder

@techbywebcoder

https://www.programiz.com/c-programming/c-if-else-statement
https://www.programiz.com/c-programming/c-if-else-statement
https://www.programiz.com/c-programming/c-if-else-statement
https://www.programiz.com/c-programming/c-if-else-statement

C PROGRAMMING Page 35

int main()

{

int a = 5, b = 5, c = 10, result;

result = (a = b) && (c > b);

printf("(a = b) && (c > b) equals to %d \n", result);

result = (a = b) && (c < b);

printf("(a = b) && (c < b) equals to %d \n", result);

result = (a = b) || (c < b);

printf("(a = b) || (c < b) equals to %d \n", result);

result = (a != b) || (c < b);

printf("(a != b) || (c < b) equals to %d \n", result);

result = !(a != b);

printf("!(a == b) equals to %d \n", result);

result = !(a == b);

printf("!(a == b) equals to %d \n", result);

return 0;

}

Output

(a = b) && (c > b) equals to 1

(a = b) && (c < b) equals to 0

(a = b) || (c < b) equals to 1

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 36

(a != b) || (c < b) equals to 0

!(a != b) equals to 1

!(a == b) equals to 0

Assignment Operators. Assignment operators are used to assign a value (or) an expres
(or) a value of a variable to another variable.

Syntax : variable name=expression (or) value (or) variable

Ex : x=10;
y=a+b;
z=p;

Compound assignment operator:

„C‟ provides compound assignment operators to assign a value to variable in order to assign a
new value to a variable after performing a specified operation.

Operator
+ =
- =
* =
/ =
% =

Example Meaning
x + = y
x - = y
x * = y
x / = y
x % = y

x=x+y
x=x-y
x=x*y
x=x/y
X=x%y

// C Program to demonstrate the working of assignment operators

#include <stdio.h>

int main()

{

int a = 5, c;

c = a;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 37

 printf("c = %d \n", c);

c += a; // c = c+a

printf("c = %d \n", c);

c -= a; // c = c-a

printf("c = %d \n", c);

c *= a; // c = c*a

printf("c = %d \n", c);

c /= a; // c = c/a

printf("c = %d \n", c);

c %= a; // c = c%a

printf("c = %d \n", c);

return 0;

}

Output

c = 5

c = 10

c = 5

c = 25

c = 5

c = 0

Increment and Decrement Operators /Unary Operators:

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 38

1. Increment operator is used to increment the current value of variable by adding integer 1.

2. Increment operator can be applied to only variables.

3. Increment operator is denoted by ++.

We have two types of increment operator i.e Pre-Increment and Post-Increment Operator.

Pre-Increment

b = ++y;

In this example suppose the value of variable „y‟ is 5 then value of variable „b‟ will be 6 because
the value of „y‟ gets modified before using it in a expression.

Post-Increment

Post-increment operator is used to increment the value of variable as soon as after executing
expression completely in which post increment is used. In the Post-Increment value is first used
in a expression and then incremented.

b = x++;

In this example suppose the value of variable „x‟ is 5 then value of variable „b‟ will be 5 because
old value of „x‟ is used.

Note :

We cannot use increment operator on the constant values because increment operator operates on
only variables. It increments the value of the variable by 1 and stores the incremented value back
to the variable

Unary operators are having higher priority than the other operators. Unary operators, meaning
they only operate on a single operand.

Increment Operator in C Programming

Pre-increment operator is used to increment the value of variable before using in the expression. In
the Pre-Increment value is first incremented and then used inside the expression.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 39

b = ++5;

or

b = 5++;

++<variable name> --<variable

name> <variable
name>--

<variable name>++
The operator ++ adds 1 to the operand and – subtracts 1 from the operand. These operators in
two forms : prefix (++x) and postfix(x++).

Operator
++x
- -x
x++
x--

Meaning
Pre increment
Pre decrement
Post increment
Post decrement

Where
1 : ++x : Pre increment, first increment and then do the operation.
2 : - -x : Pre decrement, first decrements and then do the operation.
3 : x++ : Post increment, first do the operation and then increment.
4 : x- - : Post decrement, first do the operation and then decrement.

// C Program to demonstrate the working of increment and decrement operators
#include <stdio.h>
int main()
{

int a = 10, b = 100;
float c = 10.5, d = 100.5;
printf("++a = %d \n", ++a);
printf("--b = %d \n", --b);
printf("++c = %f \n", ++c);
printf("--d = %f \n", --d);
return 0;

}
Output
++a = 11
--b = 99
++c = 11.500000
++d = 99.500000

The syntax of the operators is given below.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 40

2

Multiple increment operators inside printf
#include<stdio.h>
void main() {

int i = 1;
printf("%d %d %d", i, ++i, i++);

}
Output : 3 3 1

Explanation of program

I am sure you will get confused after viewing the above image and output of program.
1. Whenever more than one format specifiers (i.e %d) are directly or indirectly related with
same variable (i,i++,++i) then we need to evaluate each individual expression from right
to left.
2. As shown in the above image evaluation sequence of expressions written inside printf

will be – i++,++i,i
3. After execution we need to replace the output of expression at appropriate place

No Step Explanation

Evaluate
i++

1 At the time of execution we will be using older value of i = 1

Evaluate
++i

At the time of execution we will be increment value already modified after
step 1 i.e i = 3

2

Evaluate i At the time of execution we will be using value of i modified in step 2

Pictorial representation

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 41

Conditional Operator/ Ternary operator:

conditional operator checks the condition and executes the statement depending of the condition.
A conditional operator is a ternary operator, that is, it works on 3 operands.
Conditional operator consist of two symbols. 1 : question mark (?).

2 : colon (:).

Postfix and Prefix Expression in Same Statement
#include<stdio.h>
#include<conio.h>
void main() {

int i = 0, j = 0; j =
i++ + ++i;
printf("%d\n",
i);
printf("%d\n",
j);

}
Output :
2
2

Explanation of Program

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 42

Operator
& | ^ < <
> > ~

Meaning
Bitwise AND
Bitwise OR
Bitwise XOR
Shift left
Shift right
One‟s complement.

The output of bitwise AND is 1 if the corresponding bits of two operands is 1. If either bit
of an operand is 0, the result of corresponding bit is evaluated to 0.
Let us suppose the bitwise AND operation of two integers 12 and 25.
12 = 00001100 (In Binary)
25 = 00011001 (In Binary)

 Syntax : condition ? exp1 : exp2;

It first evaluate the condition, if it is true (non-zero) then the “exp1” is
evaluated, if the condition is false (zero) then the “exp2” is evaluated.
#include <stdio.h>
int main(){

char February;
int days;
printf("If this year is leap year, enter 1. If not enter any integer: ");
scanf("%c",&February);
// If test condition (February == 'l') is true, days equal to 29.
// If test condition (February =='l') is false, days equal to 28.
days = (February == '1') ? 29 : 28;
printf("Number of days in February = %d",days);
return 0;

}

Output
If this year is leap year, enter 1. If not enter any integer: 1
Number of days in February = 29

Bitwise Operators:
Bitwise operators are used to manipulate the data at bit level. It operates on integers only. It
may not be applied to float.

Bitwise AND operator &

In arithmetic-logic unit (which is within the CPU), mathematical
operations like: addition, subtraction, multiplication and division are done in bit-level which

makes processing faster and saves power. To perform bit-level operations in C programming,
bitwise operators are used.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 43

#include <stdio.h>

int main()

{

int a = 12, b = 25;

printf("Output = %d", a|b);

return 0;

Bit Operation of 12 and 25

00001100
& 00011001

00001000 = 8 (In decimal)

#include <stdio.h>
int main()
{

int a = 12, b = 25;
printf("Output = %d", a&b);
return 0;

}
Output
Output =8

The output of bitwise OR is 1 if at least one corresponding bit of two operands is 1. In C
Programming, bitwise OR operator is denoted by |.

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bitwise OR Operation of 12 and 25

00001100

| 00011001

00011101 = 29 (In decimal)

Bitwise OR operator |

Example #2: Bitwise OR

Example #1: Bitwise AND

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 44

}

Output
Output =29

Output = 21
Bitwise complement operator ~
Bitwise compliment operator is an unary operator (works on only one operand). It changes 1 to 0
and 0 to 1. It is denoted by ~.

35 = 00100011 (In Binary)

Bitwise complement Operation of 35

#include <stdio.h>

int main()

{

int a = 12, b = 25;

printf("Output = %d", a^b);

return 0;

}

Output

The result of bitwise XOR operator is 1 if the corresponding bits of two operands are
opposite. It is denoted by ^.

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bitwise XOR Operation of 12 and 25

00001100

| 00011001

00010101 = 21 (In decimal)

Example #3: Bitwise XOR

Bitwise XOR (exclusive OR) operator ^

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 45

~ 00100011

11011100 = 220 (In decimal)

Twist in bitwise complement operator in C Programming

The bitwise complement of 35 (~35) is -36 instead of 220, but why?

For any integer n, bitwise complement of n will be -(n+1). To understand this, you should have
the knowledge of 2's complement.

2's Complement

Two's complement is an operation on binary numbers. The 2's complement of a number is equal
to the complement of that number plus 1. For example:

Decimal Binary 2's complement

0 00000000 -(11111111+1) = -00000000 = -0(decimal)

1 00000001 -(11111110+1) = -11111111 = -256(decimal)

12 00001100 -(11110011+1) = -11110100 = -244(decimal)

220 11011100 -(00100011+1) = -00100100 = -36(decimal)

Note: Overflow is ignored while computing 2's complement.

The bitwise complement of 35 is 220 (in decimal). The 2's complement of 220 is -36. Hence, the
output is -36 instead of 220.

Bitwise complement of any number N is -(N+1). Here's how:

bitwise complement of N = ~N (represented in 2's complement form)

2'complement of ~N= -(~(~N)+1) = -(N+1)

Example #4: Bitwise complement

#include <stdio.h>

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 46

int main()

{

printf("complement = %d\n",~35);

printf("complement = %d\n",~-12);

return 0;

}

Complement = -36

Complement = 11

There are two Bitwise shift operators in C programming:




Right shift operator
Left shift operator.

Right Shift Operator

Right shift operator shifts all bits towards right by certain number of specified bits. It is denoted
by >>.

Left Shift Operator

Left shift operator shifts all bits towards left by certain number of specified bits. It is denoted by
<<.

1) Comma Operator :The comma operator is used to separate the statement elements
such as variables, constants or expressions, and this operator is used to link the related
expressions together, such expressions can be evaluated from left to right and the value
of right most expressions is the value of combined expressions

Ex : val(a=3, b=9, c=77, a+c)
First signs the value 3 to a, then assigns 9 to b, then assigns 77 to c, and finaly80(3+77) to

value.

Output

Special Operators

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 47

Expressions An expression is a combination of operators and operands which reduces to a
single value. An operator indicats an operation to be performed on data that yields a value. An
operand is a data item on which an operation is performed.

A simple expression contains only one operator.

Ex : 3+5 is a simple expression which yields a value 8, -a is also a single expression.
A complex expression contain more than one operator.

2) Sizeof Operator : The sizeof() is a unary operator, that returns the length in bytes o the
specified variable, and it is very useful to find the bytes occupied by the specified variable in the
memory.

Syntax : sizeof(variable-name);

int a;
Ex : sizeof(a); //OUTPUT-----2bytes

Example #6: sizeof Operator
#include <stdio.h>
int main()
{

int a, e[10];
float b;
double c;
char d;
printf("Size of int=%lu bytes\n",sizeof(a));
printf("Size of float=%lu bytes\n",sizeof(b));
printf("Size of double=%lu bytes\n",sizeof(c));
printf("Size of char=%lu byte\n",sizeof(d));
printf("Size of integer type array having 10 elements = %lu bytes\n", sizeof(e));
return 0;

}
Output
Size of int = 4 bytes
Size of float = 4 bytes
Size of double = 8 bytes
Size of char = 1 byte
Size of integer type array having 10 elements = 40 bytes

Expressions

:

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 48

 Ex : complex expression is 6+8*7.

Ex ; Algeberic Expressions C-expression
1 : ax2+bx+c
2 : a+bx
3 : 4ac/b
4 : x2/y2-1

1: a*x*x+b*x+c
2 : a+b*x.
3 : 4*a*c/b.
4 : x*x/y*y-1

Operator Precedence : Arithmetic Operators are evaluvated left to right using the
precedence of operator when the expression is written without the paranthesis.They are two
levels of arithmetic operators in C.

1 : High Priority * / %
2 : Low Priority + -.

Arithmetic Expression evaluation is carried out using the two phases from left to right.

st1 : First phase : The highest priority operator are evaluated in the 1 phase.
nd2 : Second Phase : The lowest priority operator are evaluated in the 2 phase.

Ex : a=x-y/3+z*2+p/4.

x=7, y=9, z=11, p=8.
a= 7-9/3+11*2+8/4.

st1 phase :
1 : a = 7-3+11*2+8/4
2 : a = 7-3+22+8/4
3 : a = 7-3+22+2

nd2 phase :
1 : a = 4+22+2
2 : a = 26+2
3 : a = 28

The order of evaluation can be changed by putting paranthesis in an expression.
Ex : 9-12/(3+3)*(2-1)

Whenever parentheses are used, the expressions within parantheses highest priority. If two or
more sets of paranthesis appear one after another. The expression contained in the left-most set is
evaluated first and the right-most in the last.

st1 phase :
1 : 9-12/6*(2-1)
2 : 9-12/6*1

nd2 phase :
1 : 9-2*1
2 : 9-2.

rd3 phase :

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 49

 1 : 7.

Rules for Evaluation of Expression :

1 : Evaluate the sub-expression from left to right. If parenthesized.
2 : Evaluate the arithemetic Expression from left to right using the rules of precedence.
3 : The highest precedence is given to the expression with in paranthesis.
4 : When parantheses are used, the expressions within parantheses assume highest priority.
5 : Apply the associative rule, if more operators of the same precedence occurs.

Operator Precedence and Associativity
 :

Every operator has a precedence value. An expression containing more than one
oerator is known as complex expression. Complex expressions are executed according to
precedence of operators.

Associativity specifies the order in which the operators are evaluated with the same
precedence in a complex expression. Associativity is of two ways, i.e left to ringht and right to
left. Left to right associativity evaluates an expression starting from left and moving towards
right. Right to left associativity proceds from right to left.

The precedence and associativity of various operators in C.
Operator

()
[]
+
-

++
--
!
~
*
&

sizeof
*
/

%
+
-

<<
>>

Description
Function call

Square brackets.
Unary plus

Unary minus
Increment
Decrement

Not operator
Complement

Pointer operator
Address operator
Sizeof operator
Multiplication

Division
Modulo division

Addition
Subtraction

Left shift
Right shift

3

4

5

Precedence
1

2

Associativity
L-R (left to right)

R-L (right to left)

L-R (left to right)

L-R (left to right)

L-R (left to right)

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 50

< <= > >=
= =
!=
&
^
|

&&
| |
?:

Relational Operator
Equality

Inequality
Bitwise AND
Bitwise XOR
Bitwise OR

Logical AND
Logical OR

Conditional
= *= /= %= += Assignment operator
-= &= ^= <<=

>>=
, Comma operator

Type Conversion/Type casting:
Type conversion is used to convert variable from one data type to another data type, and after
type casting complier treats the variable as of new data type.

6
7

8
9
10
11
12
13
14

15

L-R (left to right)
L-R (left to right)

L-R (left to right)
L-R (left to right)
L-R (left to right)
L-R (left to right)
L-R (left to right)
R-L (right to left)
R-L (right to left)

L-R (left to right)

For example, if you want to store a 'long' value into a simple integer then you can type cast
'long' to 'int'. You can convert the values from one type to another explicitly using the
cast operator. Type conversions can be implicit which is performed by the compiler
automatically, or it can be specified explicitly through the use of the cast operator.

Syntax:
(type_name) expression;
Without Type Casting:

1. int f= 9/4;
2. printf("f : %d\n", f);//Output: 2

With Type Casting:

1. float f=(float) 9/4;
2. printf("f : %f\n", f);//Output: 2.250000

Example:

#include <stdio.h>

int main()

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 51

{

printf("%c\n", (char)65);

getchar();

}

Type Casting - C Programming

Type casting refers to changing an variable of one data type into another. The compiler will
automatically change one type of data into another if it makes sense. For instance, if you assign
an integer value to a floating-point variable, the compiler will convert the int to a float. Casting
allows you to make this type conversion explicit, or to force it when it wouldn‟t normally
happen.

Type conversion in c can be classified into the following two types:

1. Implicit Type Conversion

When the type conversion is performed automatically by the compiler without programmers
intervention, such type of conversion is known as implicit type conversion or type promotion.

int x;

for(x=97; x<=122; x++)

{

printf("%c", x); /*Implicit casting from int to char thanks to %c*/

}

2. Explicit Type Conversion

The type conversion performed by the programmer by posing the data type of the expression of
specific type is known as explicit type conversion. The explicit type conversion is also known as
type casting.

or

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 52

Type casting in c is done in the following form:

(data_type)expression;

where, data_type is any valid c data type, and expression may be constant, variable or
expression.

For example,

int x;

for(x=97; x<=122; x++)

{

printf("%c", (char)x); /*Explicit casting from int to char*/

}

The following rules have to be followed while converting the expression from one type to
another to avoid the loss of information:

All integer types to be converted to float.

All float types to be converted to double.

All character types to be converted to integer.

Example

Consider the following code:

int x=7, y=5 ;

float z;

z=x/y; /*Here the value of z is 1*/

If we want to get the exact value of 7/5 then we need explicit casting from int to float:

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 53

int x=7, y=5;

float z;

z = (float)x/(float)y; /*Here the value of z is 1.4*/

Integer Promotion

Integer promotion is the process by which values of integer type "smaller" than int or unsigned
int are converted either to int or unsigned int. Consider an example of adding a character with an
integer −

#include <stdio.h>

main()

{

int i = 17;

char c = 'c'; /* ascii value is 99 */

int sum;

sum = i + c;

printf("Value of sum : %d\n", sum);

}

When the above code is compiled and executed, it produces the following result −

Value of sum : 116

Here, the value of sum is 116 because the compiler is doing integer promotion and
converting the value of 'c' to ASCII before performing the actual addition operation.

Usual Arithmetic Conversion

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 54

The usual arithmetic conversions are implicitly performed to cast their values to a
common type. The compiler first performs integer promotion; if the operands still have
different types, then they are converted to the type that appears highest in the
following hierarchy –

STATEMENTS

A statement causes the computer to carry out some definite action. There are three different
classes of statements in C:

Expression statements, Compound statements, and Control statements.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 55

Statements such as do, for, if, and while require that an executable statement appear as the
statement body. The null statement satisfies the syntax requirement in cases that do not need a
substantive statement body.

The Null statement is nothing but, there is no body within loop or any other statements in
C.

Example illustrates the null statement:

for (i = 0; i < 10; i++) ;

or

for (i=0;i<10;i++)

{

Null statement

A null statement consisting of only a semicolon and performs no operations. It can appear
wherever a statement is expected. Nothing happens when a null statement is executed.

Syntax: - ;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 56

//empty body

}

Most of the statements in a C program are expression statements. An expression statement is
simply an expression followed by a semicolon. The lines

i = 0;

i = i + 1;

and printf("Hello, world!\n");

are all expression statements. In C, however, the semicolon is a statement terminator. Expression
statements do all of the real work in a C program. Whenever you need to compute new values for
variables, you'll typically use expression statements (and they'll typically contain assignment
operators). Whenever you want your program to do something visible, in the real world, you'll
typically call a function (as part of an expression statement). We've already seen the most basic
example: calling the function printf to print text to the screen.

Note -If no expression is present, the statement is often called the null statement.

The return statement terminates execution of a function and returns control to the calling
function, with or without a return value. A function may contain any number of return
statements. The return statement has

syntax: return expression(opt);

If present, the expression is evaluated and its value is returned to the calling function. If
necessary, its value is converted to the declared type of the containing function's return value.

A return statement with an expression cannot appear in a function whose return type is void . If
there is no expression and the function is not defined as void , the return value is undefined. For
example, the following main function returns an unpredictable value to the operating
system:

main ()

{

Return

Expression

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 57

 return;

}

A compound statement (also called a "block") typically appears as the body of another statement,
such as the if statement, for statement, while statement, etc

A Compound statement consists of several individual statements enclosed within a pair of
braces { }. The individual statements may themselves be expression statements, compound
statements or control statements. Unlike expression statements, a compound statement does not
end with a semicolon. A typical Compound statement is given below.

{

pi=3.14;

area=pi*radius*radius;

}

The particular compound statement consists of two assignment-type expression
statements.

Example:

Compound statements

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 58

A selection statement selects among a set of statements depending on the value of a controlling
expression. Or

Moving execution control from one place/line to another line based on condition

Or

Conditional statements control the sequence of statement execution, depending on the value of a
integer expression

C‟ language supports two conditional statements.

1: if

2: switch.

1: if Statement: The if Statement may be implemented in different forms.

1: simple if statement.

2: if –else statement

3: nested if-else statement.

4: else if ladder.

The if statement controls conditional branching. The body of an if statement is executed if the
value of the expression is nonzero. Or if statement is used to execute the code if condition is true. If the expression/condition is
evaluated to false (0), statements inside the body of if is skipped from execution.

Syntax : if(condition/expression)

{

true statement;

if statement.

Selection Statement/Conditional Statements/Decision Making Statements

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 59

Example:

#include<stdio.h>

main()

{

int a=15,b=20;

 }

statement-x;

If the condition/expression is true, then the true statement will be executed otherwise the true
statement block will be skipped and the execution will jump to the statement-x. The „true
statement‟ may be a single statement or group of statement.

If there is only one statement in the if block, then the braces are optional. But
if there is more than one statement the braces are compulsory

Flowchart

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 60

 if(b>a)

{

printf("b is greater");

}

}

Output

b is greater

#include <stdio.h>
int main()
{

int number;
printf("Enter an integer: ");
scanf("%d", &number);
// Test expression is true if number is less

than 0
if (number < 0)
{ }

printf("The if statement is easy.");

return 0;

printf("You entered %d.\n", number);

}
Output 1
Enter an integer: -2
You entered -2.
The if statement is easy.
Output 2
Enter an integer: 5
The if statement in C programming is easy.

If-else statement : The if-else statement is an extension of the simple if statement. The
general form is. The if...else statement executes some code if the test expression is true (nonzero)
and some other code if the test expression is false (0).

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 61

Example:
// Program to check whether an integer entered by the user is odd or even

#include <stdio.h>
int main()
{

 Syntax : if (condition)
{
} true statement;

else
{ }

false statement;

statement-x;

If the condition is true , then the true statement and statement-x will be executed and if the
condition is false, then the false statement and statement-x is executed.
Or

If test expression is true, codes inside the body of if statement is executed and, codes inside the
body of else statement is skipped.
If test expression is false, codes inside the body of else statement is executed and, codes inside
the body of if statement is skipped.

Flowchart

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 62

 int number;
printf("Enter an integer: ");
scanf("%d",&number);
// True if remainder is 0
if(number%2 == 0)

printf("%d is an even integer.",number);
else

printf("%d is an odd integer.",number);
return 0;

}
Output
Enter an integer: 7
7 is an odd integer.

Nested if-else statement
When a series of decisions are involved, we may have to use more than on if-else statement in
nested form. If –else statements can also be nested inside another if block or else block or both.

Syntax : if(condition-1)

{ {

if (condition-2)

{

statement-1;

}

else

{

statement-2;

}

}

else

{

statement-3;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 63

#include<stdio.h>
int var1, var2;
printf("Input the value of var1:");
scanf("%d", &var1);
printf("Input the value of var2:");
scanf("%d",&var2);
if (var1 !=var2)
{

printf("var1 is not equal to var2"); //Below –
if-else is nested inside another if block if (var1
>var2) { } else { }

printf("var1 is greater than var2");

printf("var2 is greater than var1");

}
else

 }

statement-x;

If the condition-1 is false, the statement-3 and statement-x will be executed. Otherwise it
continues to perform the second test. If the condition-2 is true, the true statement-1 will be
executed otherwise the statement-2 will be executed and then the control is transferred to the
statement-x
Flowchart

Example

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 64

{ } …

Else if ladder.
The if else-if statement is used to execute one code from multiple
conditions

printf("var1 is equal to var2");

if(condition-1)
{

statement-1;
}

else if(condition-2)
{

statement-2;
}

else if(condition-3)
{

statement-3;
}

else if(condition-n)
{

statement-n;
}

else
{

default-statement;
}

statement-x;

Flowchart

Syntax :
.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 65

 #include<stdio.h>
#include<conio.h>
void main(){
int number=0;
clrscr();
printf("enter a number:");

scanf("%d",&number);
if(number==10){
printf("number is equals to 10");
}
else if(number==50){
printf("number is equal to 50");
}
else if(number==100){
printf("number is equal to 100");
}
else{
printf("number is not equal to 10, 50 or 100");
}
getch();
}

Example

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 66

Points to Remember

Switch statement : when there are several options and we have to choose only one o
from the available ones, we can use switch statement. Depending on the selected option, a
particular task can be performed. A task represents one or more statements.

Syntax:
switch(expression)
{ case value-1:
statement/block-1;
break;
case value-2:
statement/block t-2;
break;
case value-3:
statement/block -3;
break;
case value-4:

statement/block -4;
break;

default:
default- statement/block t;
break;

1.
2.

3.

4.

In above example, hello will be printed.

5. == must be used for comparison in the expression of if condition, if you use =

always return true, because it performs assignment not comparison.

6. Other than 0(zero), all other values are considered as true.

In if statement, a single statement can be included without enclosing it into curly braces

No curly braces are required in the above case, but if we have more than one statement

inside if condition, then we must enclose them inside curly braces.

 the expression will

{ }

7.

8.

if(27)

printf("hello");

int a = 5;

if(a > 4)

printf("success");

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 67

}

The expression following the keyword switch in any „C‟ expression that must yield an integer
value. It must be ab integer constants like 1,2,3 .

The keyword case is followed by an integer or a character constant, each constant in each
must be different from all the other.

First the integer expression following the keyword switch is evaluated. The value it gives
is searched against the constant values that follw the case statements. When a match is found, the
program executes the statements following the case. If no match is found with any of the case
statements, then the statements follwing the default are executed.
Rules for writing switch() statement.
1 : The expression in switch statement must be an integer value or a character constant.
2 : No real numbers are used in an expression.
3 : The default is optional and can be placed anywhere, but usually placed at end.
4 : The case keyword must terminate with colon (:).
5 : No two case constants are identical.
6 : The case labels must be constants.

Valid Switch

switch(x)

switch(x>y)

switch(a+b-2)

switch(func(x,y))

Invalid Switch

switch(f)

switch(x+2.5)

Valid Case

case 3;

case 'a';

case 1+2;

case 'x'>'y';

Invalid Case

case 2.5;

case x;

case x+2;

case 1,2,3;

Example
#include<stdio.h> main()
{
int a;
printf("Please enter a no between 1 and 5: ");
scanf("%d",&a);
switch(a)
{
case 1:
printf("You chose One");
break;
case 2:

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 68

 printf("You chose Two");
break;
case 3:
printf("You chose Three");

break;
case 4:
printf("You chose Four");
break;
case 5: printf("You chose Five.");
break;

default :
printf("Invalid Choice. Enter a no between 1 and 5"); break;
}
}

Flowchart

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 69

Points to Remember

Iteration Statements/ Loop Control Statements

How it Works

Output : A B C

The output was supposed to be only A because only the first case matches, but as there is no

break statement after the block, the next blocks are executed, until the cursor encounters a

break.

default case can be placed anywhere in the switch case. Even if we don't include the default case

switch statement works.

It isn't necessary to use break after each block, but if you do not use it, all the consecutive block

of codes will get executed after the matching block.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10.

11. }

int i = 1;

switch(i)

{

case 1:

printf("A"); // No break

case 2:

printf("B"); // No break

case 3:

printf("C");

break;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 70

Why use loops in C language?

A looping process would include the following four steps.

1 : Initialization of a condition variable.

2 : Test the condition.

3 : Executing the body of the loop depending on the condition.

4 : Updating the condition variable.

Suppose that you have to print table of 2, then you need to write 10 lines of code.By using the

loop statement, you can do it by 2 or 3 lines of code only.

A sequence of statements are executed until a specified condition is true. This sequence of

statements to be executed is kept inside the curly braces { } known as the Loop body. After

every execution of loop body, condition is verified, and if it is found to be true the loop body

is executed again. When the condition check returns false, the loop body is not executed.

The loops in C language are used to execute a block of code or a part of the program

several
times. In other words, it iterates/repeat a code or group of code many times. Or Looping means a group of statements are executed repeatedly, until some logical condition
is satisfied.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 71

#include<stdio.h>

#include<conio.h>

void main()

{

C language provides three iterative/repetitive loops.

1 : while loop

2 : do-while loop

3 : for loop

While Loop: Syntax :

variable initialization ;

while (condition)

{

statements ;

variable increment or decrement ;

}

while loop can be addressed as an entry control loop. It is completed in 3 steps.







Variable initialization.(e.g int x=0;)

condition(e.g while(x<=10))

Variable increment or decrement (x++ or x-- or x=x+2)

The while loop is an entry controlled loop statement, i.e means the condition is evaluated
first and it is true, then the body of the loop is executed. After executing the body of the loop,
the condition is once again evaluated and if it is true, the body is executed once again, the
process of repeated execution of the loop continues until the condition finally becomes false and
the control is transferred out of the loop.

Example : Program to print first 10 natural numbers

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 72

 int x;

x=1;

while(x<=10)

{

printf("%d\t", x);

x++;

}

getch();

}

Output

1 2 3 4 5 6 7 8 9 10

C Program to reverse number

#include<stdio.h>

#include<conio.h>

main()

{

int n, reverse=0, rem;

clrscr();

printf("Enter a number: ");

scanf("%d", &n);

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 73

 while(n!=0)

{

rem=n%10;

reverse=reverse*10+rem;

n/=10;

}

printf("Reversed Number: %d",reverse);

getch();

}

Flowchart

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 74

 Syntax : variable initialization ;

do{

statements ;

variable increment or decrement ;

}while (condition);

The do-while loop is an exit controlled loop statement The body of the loop are executed first
and then the condition is evaluated. If it is true, then the body of the loop is executed once again.
The process of execution of body of the loop is continued until the condition finally becomes
false and the control is transferred to the statement immediately after the loop. The statements
are always executed at least once.

Flowchart

do-while loop

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 75

Example : Program to print first ten multiple of 5

#include<stdio.h>

#include<conio.h>

void main()

{

int a,i;

a=5;

i=1;

do

{

printf("%d\t",a*i);

i++;

}while(i <= 10);

getch();

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 76

Output

5 10 15 20 25 30 35 40 45 50

Example

main()

{

int i=0

do

{

printf("while vs do-while\n");

}while(i= =1);

printf("Out of loop");

}

Output:

while vs do-while

Out of loop

For Loop:

 This is an entry controlled looping statement.

 In this loop structure, more than one variable can be initialized.

 One of the most important features of this loop is that the three actions can be taken at a
time like variable initialization, condition checking and increment/decrement.

 The for loop can be more concise and flexible than that of while and do-while loops.

Syntax : for(initialization; condition; increment/decrement)

{

Statements;

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 77

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

int x;

for(x=1; x<=10; x++)

{

printf("%d\t",x);

}

getch();

}

Output

1 2 3 4 5 6 7 8 9 10

Various forms of FOR LOOP

I am using variable num in all the below examples –

1) Here instead of num++, I‟m using num=num+1 which is nothing but same as num++.

for (num=10; num<20; num=num+1)

2) Initialization part can be skipped from loop as shown below, the counter variable is declared
before the loop itself.
int num=10;

for (;num<20;num++)

Must Note: Although we can skip init part but semicolon (;) before condition is must, without

which you will get compilation error.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 78

3) Like initialization, you can also skip the increment part as we did below. In this case
semicolon (;) is must, after condition logic. The increment part is being done in for loop
body itself.

for (num=10; num<20;)

{

//Code

num++;

}

4) Below case is also possible, increment in body and init during declaration of counter variable.

int num=10;

for (;num<20;)

{

//Statements

num++;

}

5) Counter can be decremented also, In the below example the variable gets decremented each
time the loop runs until the condition num>10 becomes false.
for(num=20; num>10; num--)

Program to calculate the sum of first n natural numbers

#include <stdio.h>

int main()

{

int num, count, sum = 0;

printf("Enter a positive integer: ");

scanf("%d", &num);

// for loop terminates when n is less than count

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 79

 for(count = 1; count <= num; ++count)

{

sum += count;

}

printf("Sum = %d", sum);

return 0;

}

Output

Enter a positive integer: 10

Sum = 55

Factorial Program using loop

#include<stdio.h>

#include<conio.h>

void main(){

int i,fact=1,number;

clrscr();

printf("Enter a number: ");

scanf("%d",&number);

for(i=1;i<=number;i++){

fact=fact*i;

}

printf("Factorial of %d is: %d",number,fact);

getch();

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 80

Output:

Enter a number: 5

Factorial of 5 is: 120

Flow Chart of for Loop :

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 81

Infinitive for loop in C

If you don't initialize any variable, check condition and increment or decrement variable in for
loop, it is known as infinitive for loop. In other words, if you place 2 semicolons in for loop, it is
known as infinitive for loop.

for(; ;){

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 82

A for loop initially
initiates a counter
variable
(initialization-
expression), then it
checks the test-
expression, and
executes the body of
the loop if the test
expression is true.
After executing the
body of the loop,

A while loop
will
evaluate

always
the

test-expression
initially. It the
test-expression
becomes true,
then the body of
the loop will be
executed.
update

The

printf("infinitive for loop example by javatpoint");

}

Basis of Difference For Loop While Loop Do While Loop

The for loop
appropriate
when we know
in advance
how many
times the loop
will be
executed.

The other two loops i.e. while and do
while loops are more suitable in the
situations where it is not known before
hand when the loop will terminate.

In

test
fails
beginning,

case if the

condition
the

and
not

want to execute
the body of the
loop even once

if it fails, then
the while loop

Where to
In case if the test
condition fails at the
beginning, and you
may want to
execute
the body of the
loop
atleast once even in
the failed condition,
then the do while

Use for Loop, while Loop
and do while Loop

at

you may

loop should be
should
preferred.

be preferred.

A do while loop will
always executed the
code in the do {} i.e.
body of the loop
block first and then How all the three loopsworks? evaluates

condition.
the

this
case also, the counter
variable is initialized
outside the body of

the loop.

In

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 83

Syntax of Loops

Position of the statements
:







Initialization

test-expression

update-expression

for (

initialization-
exp.(s);

test-expression(s);

update-
expression(s)

)

{

body-of-the-loop
;

}

In for loop, all the
three statements are
placed in one
position

the update-
expression is
executed which
updates the value of
counter variable.

while(test-
expression)

{

body-of-the-
loop;

update-
expression(s);

}

expression
should
updated

be
inside

the body of the
while. However,
the
variable
initialized
outside the body
of the loop.

counter
is

do {

body-of-the-
loop;

update-
expression(s);

}

while
expression);

(test-

In while and do while loop, they are
placed in different position.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 84

Which
Controlled
and
Which

one is Entry
Loop

one is Exit
Controlled Loop ?

Conversion of one Loop
to or Example : Print
numbers from 1 to 10
using all the three loops.

another Loop

 :

:

for (int i=1; i<=10;
i++)

{

Printf(“%d”,i); }

Both loops i.e. for loop and while loop
are entry controlled loop, means
condition is checked first and if the
condition is true then the body of the
loop will executes.

We can also have nested for loops, i.e one for loop inside another for loop. nesting is often used
for handling multidimensional arrays.

Syntax:

for(initialization; condition; increment/decrement)

{

for(initialization; condition; increment/decrement)

do while loop is an
exit controlled loop,
means means that
condition is placed
after the body of the
loop and is
evaluated before
exiting from the
loop.

int i = 1; int i = 1;

:

:

:

:

do while (i<=10)

{ {

Printf(“%d”,i);
Printf(“%d”,i);
++i
}

++i;

}

while (i<=10)

Nested for loop

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 85

 {

statement ;

}

}

Example:

main()

{

for (int i=0; i<=5; i++)

{

for (int j=0; j<=5; j++)

{

printf("%d, %d",i ,j);

}

}

}

Example : Program to print half Pyramid of numbers

#include<stdio.h>

#include<conio.h>

void main()

{

int i,j;

for(i=1;i<5;i++)

{

printf("\n");

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 86

 for(j=i;j>0;j--)

{

printf("%d",j);

}

}

getch();

}

Output

1

21

321

4321

54321

Jump Statements
Jumping statements are used to transfer the program‟s control from one location to another, these
are set of keywords which are responsible to transfer program‟s control within the same block or

from one function to another









goto statement

return statement

break statement

continue statement

goto statement : goto statement doesnot require any condition. This statement passes control
anywhere in the program i.e, control is transferred to another part of the program without testing
any condition.

.

There are four jumping statements in C language:
TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 87

 Syntax : goto label;

.

.

label:

statements;

Inthissyntax, label isan identifier.
When, the control of program reaches to goto statement, the control of the program will jump to
the label: and executes the code below it.

Or

The goto statement requires a label to identify the place to move the execution. A label is a valid
variable/identifier name and must be ended with colon (:)

Flowchart TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 88

int main()

{

int age;

Vote:

printf("you are eligible for voting");

NoVote:

printf("you are not eligible to vote");

printf("Enter you age:");

scanf("%d", &age);

if(age>=18)

goto Vote;

else

goto NoVote;

return 0;

Example

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 89

Flowchart

 break;

}

Output

Enter you age:19

you are eligible for voting

Enter you age:15

you are not eligible to vote

Syntax of break statement

Break is a keyword. The break statement terminates the loop (for, while and do...while loop)

immediately when it is encountered. The break statement is used/ associated with decision

making statement such as if ,if-else.

Break Statement

TechByWebCoder

@techbywebcoder

https://www.programiz.com/c-programming/c-for-loop
https://www.programiz.com/c-programming/c-do-while-loops

C PROGRAMMING Page 90

How break statement works?

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 91

Example

#include <stdio.h>

#include <conio.h>

void main(){

int i=1;//initializing a local variable

clrscr();

//starting a loop from 1 to 10

for(i=1;i<=10;i++){

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 92

printf("%d \n",i);

if(i==5){//if value of i is equal to 5, it will break the loop

break;

}

}//end of for loop

getch();

}

Output

12345

Continue is keyword exactly opposite to break. The continue statement is used for
continuing next iteration of loop statements. When it occurs in the loop it does not
terminate, but it skips some statements inside the loop / the statements after this
statement. . The continue statement is used/ associated with decision making statement
such as if ,if-else.
Syntax of continue Statement

continue;

Flowchart of continue Statement

Continue Statement TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 93

Example

How continue statement works?

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 94

1234678910

Comparision between break and continue statements

Using Arrays in C

1. #include <stdio.h>
2. #include <conio.h>
3. void main(){
4. int i=1;//initializing a local variable
5. clrscr();
6. //starting a loop from 1 to 10
7. for(i=1;i<=10;i++){
8. if(i==5){//if value of i is equal to 5, it will continue the loop
9. continue;
10. }
11. printf("%d \n",i);
12. }//end of for loop

13. getch();
14. }

Output

Break Continue

1 : break statement takes the control to the
ouside of the loop
2 : it is also used in switch statement.

1 :continue statement takes the control to
the beginning of the loop..
2 : This can be used only in loop
statements.
3 : This is also associated with if
condition. 3 : Always associated with if condition in

loops.

ARRAYS

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 95

C supports a derived data type known as array that can be used to handle large amounts of data
(multiple values) at a time.

Definition:

An array is a group (or collection) of same data types.

Or

An array is a collection of data that holds fixed number of values of same type.

Or

Array is a collection or group of elements (data). All the elements of array
are homogeneous (similar). It has contiguous memory location.
Or

An array is a data structured that can store a fixed size sequential collection of elements of same
data type.

What‟s the need of an array?

Suppose you have to store marks of 50 students, one way to do this is allotting 50

variables. So it will be typical and hard to manage. For example we can not access the
value of these variables with only 1 or 2 lines of code.

Another way to do this is array. By using array, we can access the elements easily. Only
few lines of code is required to access the elements of array.

Where arrays are used






to store list of Employee or Student names,
to store marks of a students,
or to store list of numbers or characters etc.

Advantage of C Array

1) Code Optimization: Less code to the access the data.

2) Easy to traverse data: By using the for loop, we can retrieve the elements of an array easily.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 96

int arr[5];

data-type variable-name[size/length of array];

For example:

int arr[10];

3) Easy to sort data: To sort the elements of array, we need a few lines of code only.

4) Random Access: We can access any element randomly using the array.

Disadvantage of Array

Fixed Size: Whatever size, we define at the time of declaration of array, we can't exceed the
limit. So, it doesn't grow the size dynamically like LinkedList
Declaration of an Array

Here int is the data type, arr is the name of the array and 10 is the size of array. It means
array arr can only contain 10 elements of int type. Index of an array starts from 0 to size-1 i.e
first element of arr array will be stored at arr[0] address and last element will occupy arr[9].

Initialization of an Array

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 97

int marks[4]={ 67, 87, 56, 77 }; //integer array initialization

float area[5]={ 23.4, 6.8, 5.5 }; //float array initialization

int marks[4]={ 67, 87, 56, 77, 59 }; //Compile time error

Different ways of initializing arrays :

1 : Initilizing all specified memory locations

2 : Partial array initialization.

3 : Intilization without size.

4 : String initialization.

1 : Initilizing all specified memory locations : If the number of values to be initialized is equal
to size of array. Arrays can be initialized at the time of declaration. Array elements can be
initialized with data items of type int,float,char, etc.

Ex : consider integer initialization

int a[5]={10,20,30,40,50};

After an array is declared it must be initialized. Otherwise, it will contain garbage value(any
random value). An array can be initialized at either compile time or at runtime.

Compile time Array initialization

Compile time initializtion of array elements is same as ordinary variable initialization.

Syntax : data_type array_name[size]={v1,v2,…vn/list of values ;

Example

int age[5]={22,25,30,32,35};

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 98

 During compilation, 5 contiguous memory locations are reserved by the compiler for the
variable a and all these locations are initialized.

The array a is initialized as

a[0] a[1] a[2] a[3] a[4]

10 20 30 40 50

1000 1002 1004 1006 1008

If the size of integer is 2 bytes, 10 bytes will be allocated for the variable a.

Ex : consider character initialization

char b[8] = {„C‟,‟O‟,‟M‟,‟P‟,‟U‟,‟T‟,‟E‟,‟R‟};

The array b is initialized as

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7]

C O M P U T E R

Other Examples : char b[5]={„J‟,‟B‟,‟R‟,‟E‟,‟C‟,‟B‟};

//error : number of initial values are more than the size of array.

Other Example : int a[5]={10,20,30,40,50,60};

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 99

//error : Number of initial values are more than the size of array.

2 : Partial Array Initilization : partial array initialization is possible in C language. If the
number of values to be initialized is less than the size of the array, then the elements are thinitialized in the order from 0 location. The remaining locations will be initialized to zero
automatically.

Ex : Consider the partial initilization

int a[5]={10,15};

Eventhough compiler allocates 5 memory locations, using this declaration
statement, the compiler initializes first two locations with 10 and 15, the next set of memory
locations are automatically initialized to zero.

The array a is partial initialization as

a[0] a[1] a[2] a[3] a[4]

10 15 0 0 0

1000 1002 1004 1006 1008

You can access elements of an array by indices/index. You can use array subscript (or
index) to access any element stored in array. Subscript starts with 0, which means
array_name[0] would be used to access first element in an array.

In general array_name[n-1] can be used to access nth element of an array. where n is any

integer
number.

Example

float mark[5];

Suppose you declared an array mark as above. The first element is mark[0], second element
is mark[1] and so on.

How to access the elements of an array?

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 100

Reading out data from an array

For example you want to read and display array elements, you can do it just by using any
loop. Suppose array is mydata[20].

for (int i=0; i<20; i++)

{

printf("%d\n", mydata[x]);

}

Few key notes:




Arrays have 0 as the first index not 1. In this example, mark[0]
If the size of an array is n, to access the last element, (n-1) index is used. In this
example, mark[4]
Suppose the starting address of mark[0] is 2120d. Then, the next address, a[1], will be
2124d, address of a[2] will be 2128d and so on. It's because the size of a float is 4 bytes.

Input data into array

As you can see, in above example that I have used „for loop‟ and „scanf statement‟ to enter data
into array. You can use any loop for data input.

Code:

for (x=0; x<=19;x++)

{

printf("enter the integer number %d\n", x);

scanf("%d", &num[x]);

} TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 101

Exmaple

#include<stdio.h>

#include<conio.h>

void main()

{

int i;

int arr[]={2,3,4}; //Compile time array initialization

for(i=0 ; i<3 ; i++) {

printf("%d\t",arr[i]);

}

getch();

}

Output

2 3 4

Exmaple

1. include <stdio.h>
2. #include <conio.h>
3. void main(){
4. int i=0;
5. int marks[5]={20,30,40,50,60};//declaration and initialization of array
6. clrscr();
7.
8. //traversal of array
9. for(i=0;i<5;i++){
10. printf("%d \n",marks[i]);
11. }
12.
13. getch();
14. }

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 102

Output
20 30 40
50 60

Runtime Array initialization

An array can also be initialized at runtime using scanf() function. This approach is usually
used for initializing large array, or to initialize array with user specified values.

Example

#include<stdio.h>

#include<conio.h>

void main()

{

int arr[4];

int i, j;

printf("Enter array element");

for(i=0;i<4;i++)

{

scanf("%d",&arr[i]); //Run time array initialization

}

for(j=0;j<4;j++)

{

printf("%d\n",arr[j]);

}

getch();

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 103

}

Two‐Dimensional Arrays
The two dimensional array in C language is represented in the form of rows and columns,
also known as matrix. It is also known as array of arrays or list of arrays.

The two dimensional, three dimensional or other dimensional arrays are also known
as multidimensional arrays.
Declaration of two dimensional Array

data_type array_name[size1][size2];

Example

 Initialization of 2D Array

int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

int twodimen[4][3];

Example :

int a[3][4];

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 104

Example Write a C program Addition of Two Matrices

#include<stdio.h>

#include<conio.h>

Accessing Two-Dimensional Array Elements

An element in a two-dimensional array is accessed by using the subscripts, i.e., row index
and column index of the array.

Example

1. #include <stdio.h>
2. #include <conio.h>
3. void main(){
4. int i=0,j=0;
5. int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};
6. clrscr();
7. //traversing 2D array
8. for(i=0;i<4;i++){
9. for(j=0;j<3;j++){
10. printf("arr[%d] [%d] = %d \n",i,j,arr[i][j]);
11. }//end of j
12. }//end of i
13. getch();
14. }

Output
arr[0][0] = 1 arr[0][1] = 2
arr[0][2] = 3 arr[1][0] = 2
arr[1][1] = 3 arr[1][2] = 4
arr[2][0] = 3 arr[2][1] = 4
arr[2][2] = 5 arr[3][0] = 4
arr[3][1] = 5 arr[3][2] = 6 TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 105

void main()

{

int a[25][25],b[25][25],c[25][25],i,j,m,n;

clrscr();

printf("enter the rows and colums of two matrics:\n");

scanf("%d%d",&m,&n);

printf("\nenter the elements of A matrics");

for(i=0;i<m;i++)

{

for(j=0;j<n;j++)

scanf("\t%d",&a[i][j]);

}

printf("\nenter the elements of B matrics");

for(i=0;i<m;i++)

{

for(j=0;j<n;j++)

scanf("\t%d",&b[i][j]);

}

printf("\nThe elements of A matrics");

for(i=0;i<m;i++)

{

printf("\n");

for(j=0;j<n;j++)

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 106

 printf("\t%d",a[i][j]);

}

printf("\nThe elements of B matrics");

for(i=0;i<m;i++)

{

printf("\n");

for(j=0;j<n;j++)

printf("\t%d",a[i][j]);

}

printf("\nThe additon of two matrics");

for(i=0;i<m;i++)

{

printf("\n");

for(j=0;j<n;j++)

{

c[i][j]=a[i][j]+b[i][j];

printf("\t%d",c[i][j]);

}

}

getch();

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 107

Write a C program Multiplication of Two Matrices.

#include<stdio.h>

#include<conio.h>

void main()

{

int a[25][25],b[25][25],c[25][25],i,j,m,n,k,r,s;

clrscr();

printf("enter the rows and colums of A matrics:\n");

scanf("%d%d",&m,&n);

printf("enter the rows and colums of B matrics:\n");

scanf("%d%d",&r,&s);

printf("\nenter the elements of A matrics");

for(i=0;i<m;i++)

{

for(j=0;j<n;j++)

scanf("\t%d",&a[i][j]);

}

printf("\nenter the elements of B matrics");

for(i=0;i<m;i++)

{

for(j=0;j<n;j++)

scanf("\t%d",&b[i][j]);

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 108

 }

printf("\nThe elements of A matrics");

for(i=0;i<m;i++)

{

printf("\n");

for(j=0;j<n;j++)

printf("\t%d",a[i][j]);

}

printf("\nThe elements of B matrics");

for(i=0;i<m;i++)

{

printf("\n");

for(j=0;j<n;j++)

printf("\t%d",b[i][j]);

}

for(i=0;i<m;i++)

{

printf("\n");

for(j=0;j<n;j++)

{

c[i][j]=0;

for(k=0;k<m;k++)

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 109

 c[i][j]=c[i][j]+a[i][k]*b[k][j];

}

}

printf("\nThe Multiplication of two matrics");

for(i=0;i<m;i++)

{

printf("\n");

for(j=0;j<n;j++)

printf("\t%d",c[i][j]);

}

getch();

}

How to initialize a multidimensional array?

Initialization of a three dimensional array.

You can initialize a three dimensional array in a similar way like a two dimensional array. Here's
an example
int test[2][3][4] = {

{ {3, 4, 2, 3}, {0, -3, 9, 11}, {23, 12, 23, 2} },

{ {13, 4, 56, 3}, {5, 9, 3, 5}, {3, 1, 4, 9} }

};

Example

Multidimensional Arrays

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 110

#include <stdio.h>

int main()

{

// this array can store 12 elements

int i, j, k, test[2][3][2];

printf("Enter 12 values: \n");

for(i = 0; i < 2; ++i) {

for (j = 0; j < 3; ++j) {

for(k = 0; k < 2; ++k) {

scanf("%d", &test[i][j][k]);

}

}

}

// Displaying values with proper index.

printf("\nDisplaying values:\n");

for(i = 0; i < 2; ++i) {

for (j = 0; j < 3; ++j) {

for(k = 0; k < 2; ++k) {

printf("test[%d][%d][%d] = %d\n", i, j, k, test[i][j][k]);

}

}

}

return 0;

}

Output

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 111

Enter 12 values:

1234567891011

12 Displaying

Values: test[0][0]

[0] = 1 test[0][0]

[1] = 2 test[0][1]

[0] = 3 test[0][1]

[1] = 4 test[0][2]

[0] = 5 test[0][2]

[1] = 6 test[1][0]

[0] = 7 test[1][0]

[1] = 8 test[1][1]

[0] = 9 test[1][1]

[1] = 10 test[1][2]

[0] = 11 test[1][2]

[1] = 12

String Concepts

String is an array of characters that is terminated by \0 (null character). This null
character indicates the end of the string. Strings are always enclosed by doublequotes ("
"). Whereas, character is enclosed by single quotes. Or

STRINGS:

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 112

In „C‟ language the group of characters, digits, and symbols enclosed within double
quotation (" ") marks are called as string otherwise a string is an array of characters
and terminated by NULL character which is denoted by the escape sequence „\0‟.

C Strings

Declaration of String: C does not support string as a data type. However, it allows us to
represent strings as character arrays. In C, a string variable is any valid C variable name and it is
always declared as an array of characters.

The general form of declaration of a string variable is :

Syntax: char string_name[size];

The size determines the number of characters in the string name.

Note: In declaration of string size must be required to mention otherwise it gives an error.

Ex: char str[]; // Invalid

char str[0]; // Invalid

char str[-1]; // Invalid

char str[10]; // Valid

//Valid char a[9];

Using this declaration the compiler allocates 9 memory locations for the variable a
ranging from 0 to 8.

0 1 2 3 4 5 6 7 8

Here, the string variable a can hold maximum of 9 characters including NULL(\0)
character.
Initializing Array string

Syntax : char string_name[size]={“string” };

Note: In Initialization of the string if the specific number of character is not initialized it then
rest of all character will be initialized with NULL.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 113

char str[5]={'5','+','A'};

str[0]; ---> 5

str[1]; ---> +

str[2]; ---> A

str[3]; ---> NULL

str[4]; ---> NULL

Note: In initialization of the string we can not initialized more than size of string elements.

Ex:

char str[2]={'5','+','A','B'}; // Invalid

Different ways of initialization can be done in various ways :

1 : Initilizing locations character by character.

2 : Partial array initialization.

3 : Intilization without size.

4 : Array initialization with a string .

1 : Initilizing locations character by character

Consider the following declaration with initialization,

Char b[9]={„C‟,‟O‟,‟M‟,‟P‟,‟U‟,‟T‟,‟E‟,‟R‟};

The compiler allocates 9 memory locations ranging from 0 to 8 and these locations are
initialized with the characters in the order specified. The remaining locations are automatically
initialized to null characters.

C O M P U T E R \0

0 1 2 3 4 5 6 7 8

2 : Partial Array Initilization : If the characters to be initialized is less than the size of the
array, then the characters are stored sequentially from left to right.The remaining locations will
be initialized to NULL characters automatically.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 114

Ex : Consider the partial initilization

int a[10]={„R‟,‟A‟,‟M‟,‟A‟ };

The compiler allocates 10 bytes for the variable a ranging from 0 to 9 and
initializes first four locations with the ASCII characters of „R‟, „A‟, „M‟, „A‟.The remaining
locations are automatically filled with NULL characters (i.e,\0).

R A M A \0 \0 \0 \0 \0 \0

0 1 2 3 4 5 6 7 8 9

3 : Initilization without size : consider the declaration along with the initialization

char b[]={„C‟,‟O‟,‟M‟,‟P‟,‟U‟,‟T‟,‟E‟,‟R‟};

In this declaration, The compiler will set the array size to the total number of
initial values i.e 8. The character will be stored in these memory locations in the order specified.

b[0]

C

b[1]

O

b[2] b[3] b[4]

U

b[5] b[6]

E

b[7]

R M P T

4) Array Initilization with a String : consider the declaration with string initialization.

char b[] = “COMPUTER”;

Here, the string length is 8 bytes. But , string size is 9 bytes. So the compiler reserves
8+1 memory locations and these locations are initialized with the characters in the order
specified. The string is terminated by \0 by the compiler.

C O M P U T E R \0

0 1 2 3 4 5 6 7 8

The string “COMPUTER” contin 8 charactes, because it is a string. It always ends with
null character. So, the array is 9 bytes (i.e string length+1 byte for null character).

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 115

Reading and Writing Strings : The „%s‟ control string can be used in scanf() statement to
read a string from the teriminal and the same may be used to write string to the terminal
in printf() statement.

Example : char name[10];

scanf(“%s”,name);

printf(“%s”,name);

Example:

1. #include <stdio.h>

2. void main ()

3. {

4.

5.

6.

7.

8.

9. }

char ch[13]={'c', 'p', 'r', 'o', 'g', 'r', 'a', 'm', 'm', i', „n‟, „g‟, „\0‟};

char ch2[13]="cprogramming";

printf("Char Array Value is: %s\n", ch);

printf("String Literal Value is: %s\n", ch2);

Output

Char Array Value is: cprogramming

String Literal Value is: cprogramming

Example:

#include <stdio.h>

int main()

{

char name[20];

printf("Enter name: ");

scanf("%s", name);

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 116

Formated I/O Functions

Input Output

scanf()

fscanf()

print()

fprintf()

I / O Functions

Unformated I/O Functions

Input Output

getc()

getchar()

gets()

getch()

getche()

putc()

putchar()

puts()

 printf("Your name is %s.", name);

return 0;

}

Output

Enter name: Dennis Ritchie

Your name is Dennis.

String Input/output Functions

The strings can be read from the keyboard and can be displayed onto the monitor
using various functions.

The various input and output functions that are associated with can be classified
as

C PROGRAMMING Page 117

Unformated I/O Functions

1 : getchar() function : A single character can be given to the computer using „C‟ input library

function getchar().

Syntax : char variable=getchar();

The getchar() function is written in standared I/O library. It reads a single character from a
standared input device. This function do not require any arguments, through a pair of
parantheses, must follow the statements getchar().

#include<stdio.h>

#include<conio.h>

#include<ctype.h>

void main()

{

char ch;

clrscr();

printf("Enter any character/digit:");

ch=getchar();

if(isalpha(ch)>0)

printf("it is a alphabet:%c\n",ch);

else if(isdigit(ch)>0)

printf("it is a digit:%c\n",ch);

else

printf("it is a alphanumeric:%c\n",ch);

getch();

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 118

}.

OUTPUT : Enter any character/Digit : abc

it is a alphabet:a

2 : putchar() function :The putchar() function is used to display one character at a time

on the
standared output device. This function does the reverse operation of the singlecharacter input
function. Syntax : putchar(character varaiable); #include<stdio.h> #include<conio.h>

#include<ctype.h> void main() {

char ch;

printf("Enter any alphabet either in lower or uppercase:");

ch=getchar();

if(islower(ch))

putchar(toupper(ch));

else

putchar(tolower(ch));

getch();

}

OUTPUT :Enter any alphabet either in lower or uppercase :a

A

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 119

3 : gets() : The gets() function is used to read the string (String is a group of characters) from the
standard input device (keyboard).

Syntax : gets(char type of array variable);

Ex :#include<stdio.h>

#include<conio.h>

void main()

{

char str[40];

clrscr();

printf("Enter String name:");

gets(str);

printf("Print the string name%s:",str);

getch();

}

OUTPUT : Enter the string : reddy

Print the string :reddy

4 : puts() :The puts() function is used to display the string to the standared output device
(Monitor).
Syntax : puts(char type of array variable);

Program using gets() function and puts() function.

#include<stdio.h>

#include<conio.h>

void main()

{

char str[40];

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 120

puts("Enter String name:");

gets(str);

puts("Print the string name:");

puts(str);

getch();

}

OUTPUT :Enter string name :

subbareddy

Print the string name

subbareddy

getch() function :The getch function reads a single character directly from the keyboard,
without echoing to the screen.
Syntax : int getch();

Ex : #include<stdio.h>

void main()

{

char c;

c=getch();

}

getche() function :The getche() function reads a single character from the keyboard and echoes
it to the current text window.
Syntax : int getche();

Ex : #include<stdio.h>

void main()

{

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 121

The various string handling functions that are supported in C language are as shown

String Function

strlen(str)

strcpy(str1,str2

)

strcat(str1,str2)

strlwr(str)

strupr(str)

strrev(str)

strcmp(str1,str

2)

Description

Returns the length of the string str.

Copies the string str2 to string str1

Append string str2 to string str1.

Converts the string str to lowercase

Converts the string str to uppercase.

Reverse the string str.

Compare two strings str1 and str2.

All these functions are defined in string.h header file.

1 : strlen(string) – String Length : This function is used to count and return the number of
characters present in a string.

 char c;

c=getche();

}

getc() function : This function is used to accept a single character from the standared input to a
character variable.
Syntax : character variable=getc();

putc() function :This function is used to display a single character in a character variable to
standared output device.
Syntax : putc(character variable);

Array of Strings

String Manipulation Functions/String Handling Functions

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 122

 Syntax : var=strlen(string);

Ex : Progrm using strlen() function

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char name[]="JBREC";

int len1,len2;

clrscr();

len1=strlen(name);

len2=strlen("JBRECECE");

printf("The string length of %s is: %d\n",name,len1);

printf("The string length of %s is: %d","JBRECECE",len2);

getch();

}

OUTPUT :

The string length of JBREC is : 5

The string length of JBRECECE is :8

Write a program to find the length of string

#include<stdio.h>

#include<conio.h>

void main()

{

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 123

 char str[10];

int index;

printf("Enter the string:");

scanf("%s",str);

for(index=0;str[index]!=0;index++);

printf("The length of string is:%d",index);

getch();

}

OUTPUT :

Enter the string : subbareddy

The length of string is :10

2 : strcpy(string1,string2) – String Copy : This function is used to copy the contents of one string
to another string.
Syntax : strcpy(string1,string2);

Where

string1 : is the destination string.

string 2: is the source string.

i.e the contents of string2 is assigned to the contents of string1.

Ex : Progrm using strcpy() function

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 124

 char str1[]="REDDY";

char str2[10]; strcpy(str2,str1);

printf("The string1 is

:%s\n",str1); printf("The string2

is :%s\n",str2);

strcpy(str2,str1+1); printf("The

string1 is :%s\n",str1);

printf("The string2 is :%s",str2);

} OUTPUT : The string1

is : REDDY The string2

is : REDDY The string1

is : REDDY The string2

is : EDDY

//Write a program to copy contents of one string to another string.

#include<stdio.h>

#include<conio.h>

void main()

{

char str1[10],str2[20];

int index;

printf("Enter the string\n");

scanf(“%s”,str1);

for(index=0;str1[index]!='\0';index++)

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 125

 str2[index]=str1[index];

str2[index]='\0';

printf("String1 is

:%s\n",str1); printf("String2

is :%s\n",str2); getch();

} OUTPUT : Enter the string :

cprogramming String1 is :

cprogramming String2 is :

cprogramming

3 : strlwr(string) – String LowerCase : This function is used to converts upper case letters of the
string in to lower case letters.
Syntax : strlwr(string);

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char str[]="JBREC";

clrscr();

strlwr(str);

printf("The lowercase is :%s\n",str);

getch();

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 126

OUTPUT : The lowercase is : jbrec

Write a program to which converts given string in to lowercase.

#include<stdio.h>

#include<conio.h>

void main()

{

char str[10];

int index;

printf("Enter the string:");

scanf("%s",str);

for(index=0;str[index]!='\0';index++)

{

if(str[index]>='A' && str[index]<='Z')

str[index]=str[index]+32;

}

printf("After conversionis :%s",str);

getch();

}

OUTPUT : Enter the string : SUBBAREDDY

After conversion string is :subbareddy

4 : strupr(string) – String UpperCase : This function is used to converts lower case letters of the
string in to upper case letters.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 127

Syntax : strupr(string);

Program using strupr() function.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char str[]="jbrec";

strupr(str);

printf("UpperCase is :%s\n",str);

getch();

}

OUTPUT : UpperCase is : JBREC

Write a program to which converts given string in to uppercase.

#include<stdio.h>

#include<conio.h>

void main()

{

char str[10];

int index;

printf("Enter the string:");

scanf("%s",str);

for(index=0;str[index]!='\0';index++)

{

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 128

 if(str[index]>='a' && str[index]<='z')

str[index]=str[index]-32;

}

printf("After conversionis :%s",str);

getch();

}

OUTPUT : Enter the string : subbareddy

After conversion string is :SUBBAREDDY

5 : strcmp(string1,string2) – String Comparision : This function is used to compares two strings
to find out whether they are same or different. If two strings are compared character by character
until the end of one of the string is reached. If the two strings are same strcmp() returns a value
zero. If they are not equal, it returns the numeric difference between the first non-matching
characters.

Syntax : strcmp(string1,string2);

Program using strcmp() function

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char str1[]="reddy"; char

str2[]="reddy"; int i,j,k;

i=strcmp(str1,str2);

j=strcmp(str1,"subba");

k=strcmp(str2,"Subba");

printf("%5d%5d%5d\n",i,j,k

);

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 129

}

OUTPUT : 0 -1 32

Write a C program to find the comparision of two strings.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char str1[10],str2[20];

int index,l1,l2,flag=1;

printf("Enter first string:");

scanf("%s",str1);

printf("Enter second string:");

scanf("%s",str2);

l1=strlen(str1);

l2=strlen(str2);

printf("Length of string1:%d\n",l1);

printf("Length of string2:%d\n",l2);

if(l1==l2)

{

for(index=0;str1[index]!='\0';index++)

{

if(str1[index]!=str2[index])

{

flag=0;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 130

 break;

}

}

}

else

flag=0;

if(flag==1)

printf("Strings are equal");

else

printf("Strings are not equal");

}

OUTPUT : Enter the first string :jbrec

Enter the second

string:jbrec Length of

string1 :5 Length of string2

:5 Strings are equal

6: strcat(string1,string2) – String Concatenation : This function is used to concatenate or
combine, two strings together and forms a new concatenated string.
Syntax : strcat(sting1,string2);

Where

string1 : is the firdt string1.

string2 : is the second string2

when the above function is executed, string2 is combined with string1 and it
removes the null character (\0) of string1 and places string2 from there.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 131

Program using strcat() function.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char

str1[10]="jbrec";

char str2[]="ece";

strcat(str1,str2);

printf("%s\n",str1);

printf("%s\n",str2);

getch(); }

OUTPUT : jbrecece

ece

7 : strrev(string) - String Reverse :This function is used to reverse a string. This function takes
only one argument and return one argument.
Syntax : strrev(string);

Ex : Program using strrev() function

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 132

 char str[20];

printf("Enter the string:");

scanf("%s",str);

printf("The string reversed is:%s",strrev(str));

getch();

}

OUTPUT : Enter the string :subbareddy

The string reversed is : ydderabbus

User‐Defined Functions

Definition: A function is a block of code/group of statements/self contained block of statements/
basic building blocks in a program that performs a particular task. It is also known
as procedure or subroutine or module, in other programming languages.

To perform any task, we can create function. A function can be called many times. It
provides modularity and code reusability.

FUNCTIONS:

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 133

Suppose, you have to check 3 numbers (781, 883 and 531) whether it is prime number or
not. Without using function, you need to write the prime number logic 3 times. So, there is repetition of
code.

But if you use functions, you need to write the logic only once and you can reuse it several times.

Advantage of functions

1) Code Reusability

By creating functions in C, you can call it many times. So we don't need to write the same code
again and again.

2) Code optimization

It makes the code optimized we don't need to write much code.

3) Easily to debug the program.

Example:

Types of Functions

There are two types of functions in C programming:

1. Library Functions: are the functions which are declared in the C header files such as
scanf(), printf(), gets(), puts(), ceil(), floor() etc. You just need to include appropriate
header files to use these functions. These are already declared and defined in C
libraries. oints to be Remembered
System defined functions are declared in header files

System defined functions are implemented in .dll files. (DLL stands for Dynamic Link
Library).
To use system defined functions the respective header file must be included.

2. User-defined functions: are the functions which are created by the C programmer, so
that he/she can use it many times. It reduces complexity of a big program and optimizes
the code. Depending upon the complexity and requirement of the program, you can create
as many user-defined functions as you want.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 134

ELEMENTS OF USER-DEFINED FUNCTINS :

In order to write an efficient user defined function, the programmer must familiar with the
following three elements.

1 : Function Declaration. (Function Prototype).

2 : Function Call.

3 : Function Definition

Function Declaration. (Function Prototype).

A function declaration is the process of tells the compiler about a function name.

Syntax

return_type function_name(parameter/argument);

return_type function-name();

Ex : int add(int a,int b);

int add();

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 135

Note: At the time of function declaration function must be terminated with ;.

Calling a function/function call

When we call any function control goes to function body and execute entire code.

Syntax : function-name();

function-name(parameter/argument);

return value/ variable = function-name(parameter/argument);

Ex : add();

add(a,b);

c=fun(a,b);

// function without parameter/argument

// function with parameter/argument

// function with parameter/argument and return values

Defining a function.

Defining of function is nothing but give body of function that means write logic inside function
body.
Syntax

return_ type function-name(parameter list) // function header.

{

declaration of variables;

body of function; // Function body

return statement; (expression or value) //optional

}

Eg: int add(int x, int y)

{

int add(int x, int y)

{

return (x + y);

}

int z;

z = x + y;

(or)

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 136

}

return z;

The execution of a C program begins from the main() function.

When the compiler encounters functionName(); inside the main function, control of the program
jumps to
void functionName()

And, the compiler starts executing the codes inside the user-defined function.

The control of the program jumps to statement next to functionName(); once all the codes inside
the function definition are executed.
Example:

#include<stdio.h>

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 137

#include<conio.h>

void sum(); // declaring a function

clrsct();

int a=10,b=20, c;

void sum() // defining function

{

c=a+b;

printf("Sum: %d", c);

}

void main()

{

sum(); // calling function

}

Output

Sum:30

Example:

#include <stdio.h>

int addNumbers(int a, int b);

int main()

{

// function prototype

int n1,n2,sum;

printf("Enters two numbers: ");

scanf("%d %d",&n1,&n2);

sum = addNumbers(n1, n2); // function call

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 138

Return Statement

 printf("sum = %d",sum);

return 0;

}

int addNumbers(int a,int b)

{

// function definition

int result;

result =

a+b; return

result;

// return statement

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 139

Syntax of return statement

Syntax : return; // does not return any value

or

return(exp); // the specified exp value to calling function.

For example,

return a;

return (a+b);

The return statement terminates the execution of a function and returns a value to the calling
function. The program control is transferred to the calling function after return statement.
In the above example, the value of variable result is returned to the variable sum in
the main() function.

PARAMETERS :

parameters provides the data communication between the calling function and called function.

They are two types of parametes

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 140

 1 : Actual parameters.

2 : Formal parameters.

1 : Actual Parameters : These are the parameters transferred from the calling function (main
program) to the called function (function).
2 : Formal Parameters :These are the parameters transferred into the calling function (main
program) from the called function(function).







The parameters specified in calling function are said to be Actual Parameters.

The parameters declared in called function are said to be Formal Parameters.

The value of actual parameters is always copied into formal parameters.

Ex : main()

{

fun1(a , b); //Calling function

}

fun1(x, y)

{

//called function

.

}

Where

a, b are the Actual Parameters

x, y are the Formal Parameters

Difference between Actual Parameters and Formal Parameters

Actual Parameters

1 : Actual parameters are used in calling
function when a function is invoked.

Formal Parameters

1 : Formal parameters are used in the
function header of a called function.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 141

Ex : c=add(a,b); Here a,b are actual
parameters. 2 : Actual parameters
can be constants,
variables or expression. Ex :
c=add(a,b) //variable

Ex : int add(int m,int n);

Here m,n are called formal parameters.

2 : Formal parametes should be only
variable. Expression and constants are not
allowed.

Ex : int add(int m,n); //CORRECT
c=add(a+5,b);
//expression.
c=add(10,20);
//constants.

int add(int m+n,int n) //WRONG

int add(int m,10); //WRONG

3 : Actual parameters sends values to the
formal parameters.
Ex : c=add(4,5);

3 : Formal parametes receive values from
the actual parametes.
Ex : int add(int m,int n);

Here m will have the value 4 and n will
have the value 5.
4 : if formal parameters contains address,
they should be declared as pointers. 4 : Address of actual parameters can be sent

to formal parameters

PASSING PARAMETERS TO FUNCTIONS :There are two ways to pass value or data to
function in C language: call by value and call by reference. Original value is not modified in

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 142

call by value but it is modified in call by reference.

The called function receives the information from the calling function through the parameters.
The variables used while invoking the calling function are called actual parameters and the
variables used in the function header of the called function are called formal parameters.

C provides two mechanisms to pass parameters to a function.

1 : Pass by value (OR) Call by value.

2 : Pass by reference (OR) Call by Reference.

1 : Pass by value (OR) Call by value :

In call by value, value being passed to the function is locally stored by the function parameter in
stack memory location. If you change the value of function parameter, it is changed for the
current function only. It will not change the value of variable inside the caller method such as
main().
Or

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 143

 When a function is called with actual parameters, the values of actual parameters are copied into
formal parameters. If the values of the formal parametes changes in the function, the values of
the actual parameters are not changed. This way of passing parameters is called pass by value or
call by value.

Ex :

#include<stdio.h>

#include<conio.h>

void swap(int ,int);

void main()

{

int i,j;

printf("Enter i and j values:");

scanf("%d%d",&i,&j);

printf("Before swapping:%d%d\n",i,j);

swap(i,j);

printf("After swapping:%d%d\n",i,j);

getch();

}

void swap(int a,int b)

{

int temp;

temp=a;

a=b;

b=temp;

}

Output

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 144

Enter i and j values: 10 20

Before swapping: 10 20

After swapping: 10 20

2 : Pass by reference (OR) Call by Reference : In pass by reference, a function is called with
addresses of actual parameters. In the function header, the formal parameters receive the
addresses of actual parameters. Now the formal parameters do not contain values, instead they
contain addresses. Any variable if it contains an address, it is called a pointer variable. Using
pointer variables, the values of the actual parameters can be changed. This way of passing
parameters is called call by reference or pass by reference.

Ex : #include<stdio.h>

#include<conio.h>

void swap(int *,int *);

void main()

{

int i,j;

printf("Enter i and j values:");

scanf("%d%d",&i,&j);

printf("Before swapping:%d%d\n",i,j);

swap(&i ,&j);

printf("After swapping:%d%d\n",i,j);

}

void swap(int *a,int *b)

{

int temp;

temp=*a;

*a=*b;

*b=temp;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 145

Output

Enter i and j values: 10 20

Before swapping:10 20

After swapping: 20 10

Differnce between Call by value and Call by reference

}

Call by value

1 : When a function is called the values of
variables are passed
2 : Change of formal parameters in the
function will not affect the actual
parameters in the calling function.

3 : Execution is slower since all the values
have to be copied into formal parameters.

Call by Reference 1 : When a function is

called the address of
variables are passed.
2 : The actual parameters are changed

since
the formal parameters indirectlymanipulate
the actual parametes. 3 : Execution is

faster since only address
are copied. 1 : Functions with no Parameters and no Return Values.

2 : Functions with no Parameters and Return Values.

3 : Functions with Parameters and no Return Values.

4 : Functions with Parameters and Return Values.

1 : Functions with no Parameters and no Return Values :

1 : In this category, there is no data transfer between the calling function and called function.

2 : But there is flow of control from calling function to the called function.

3 : When no parameters are there , the function cannot receive any value from the calling
function.
4: When the function does not return a value, the calling function cannot receive any value from
the called function.

Ex #include<stdio.h>

C PROGRAMMING Page 146

1 : In this category, there is no data transfer between the calling function and called function.

2 : But there is data transfer from called function to the calling function.

3 : When no parameters are there , the function cannot receive any values from the calling
function.
4: When the function returns a value, the calling function receives one value from the called
function.

Ex : #include<stdio.h>

#include<conio.h>

int sum();

 #include<conio.h

> void sum(); void

main()

{

sum();

getch();

}

void sum()

{

int a,b,c;

printf("enter the values of a and b");

scanf("%d%d",&a,&b);

c=a+b;

printf("sum=%d",c);

}

2 : Functions with no Parameters and Return Values.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 147

 void main()

{

int c;

clrscr();

c=sum();

printf("sum=%d",c);

getch();

}

int sum()

{

int a,b,c;

printf("enter the values of a and b");

scanf("%d%d",&a,&b);

c=a+b;

return c;

}

3 : Functions with Parameters and no Return Values.

1 : In this category, there is data transfer from the calling function to the called function using
parameters.
2 : But there is no data transfer from called function to the calling function.

3 : When parameters are there , the function can receive any values from the calling function.

4: When the function does not return a value, the calling function cannot receive any value from
the called function.

Ex : #include<stdio.h>

#include<conio.h>

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 148

 void sum(int a,int b);

void main()

{

int m,n; clrscr(); printf("Enter

m and n values:");

scanf("%d%d",&m,&n);

sum(m,n); getch();

}

void sum(int a,int b)

{

int c;

c=a+b;

printf("sum=%d",c);

}

4 : Functions with Parameters and Return Values.

1 : In this category, there is data transfer from the calling function to the called function using
parameters.
2 : But there is no data transfer from called function to the calling function.

3 : When parameters are there , the function can receive any values from the calling function.

4: When the function returns a value, the calling function receive a value from the called
function.
Ex :

#include<stdio.h>

#include<conio.h>

int sum(int a,int b);

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 149

 void main()

{

int m,n,c;

clrscr();

printf("Enter m and n values");

scanf("%d%d",&m,&n);

c=sum(m,n);

printf("sum=%d",c);

getch();

}

int sum(int a,int b)

{

int c;

c=a+b;

return c;

}

When a function gets executed in the program, the execution control is transferred from calling
function to called function and executes function definition, and finally comes back to the calling
function. In this process, both calling and called functions have to communicate each other to
exchange information. The process of exchanging information between calling and called
functions is called as inter function communication.

In C, the inter function communication is classified as follows...





Downward Communication

Upward Communication

Inter‐Function Communication TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 150

 Bi-directional Communication

Downward Communication

In this type of inter function communication, the data is transferred from calling function to
called function but not from called function to calling function. The functions with parameters
and without return value are considered under downward communication. In the case of
downward communication, the execution control jumps from calling function to called function
along with parameters and executes the function definition,and finally comes back to the calling
function without any return value. For example consider the following program...
Example:

#include <stdio.h>

#include<conio.h>

void main(){

int num1, num2 ;

void addition(int, int) ; // function declaration

clrscr() ;

num1 = 10 ;

num2 = 20 ;

printf("\nBefore swap: num1 = %d, num2 = %d", num1, num2) ;

addition(num1, num2) ; // calling function

getch() ;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 151

}

void addition(int a, int b) // called function

{

printf("SUM = %d", a+b) ;

}

Output

SUM=30

Upward Communication

In this type of inter function communication, the data is transferred from called function to
calling function but not from calling function to called function. The functions without
parameters and with return value are considered under upward communication. In the case of
upward communication, the execution control jumps from calling function to called function
without parameters and executes the function definition, and finally comes back to the calling
function along with a return value. For example consider the following program...
Exmaple:

#include <stdio.h>

#include<conio.h>

void main(){

int result ;

int addition() ; // function declaration

clrscr() ;

result = addition() ; // calling function

printf("SUM = %d", result) ;

getch() ;

}

int addition() // called function

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 152

{

int num1, num2 ;

num1 = 10; num2 =

20; return

(num1+num2) ;

}

Output

SUM=30

Bi - Directional Communication

In this type of inter function communication, the data is transferred from calling function to
called function and also from called function to calling function. The functions with parameters
and with return value are considered under bi-directional communication. In the case of bi-
drectional communication, the execution control jumps from calling function to called function
along with parameters and executes the function definition, and finally comes back to the calling
function along with a return value. For example consider the following program...
Example:

#include <stdio.h>

#include<conio.h>

void main(){

int num1, num2, result ;

int addition(int, int) ; // function declaration

clrscr() ;

num1 = 10 ;

num2 = 20 ;

result = addition(num1, num2) ; // calling function

printf("SUM = %d", result) ;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 153

 getch() ;

}

int addition(int a, int b) // called function

{

return (a+b) ;

}

Output

SUM=30

Standard Functions
The standard functions are built-in functions. In C programming language, the standard functions
are declared in header files and defined in .dll files. In simple words, the standard functions can
be defined as "the ready made functions defined by the system to make coding more easy". The
standard functions are also called as library functions or pre-defined functions.

In C when we use standard functions, we must include the respective header file

using #include statement. For example, the function printf() is defined in header
file stdio.h (Standard Input Output header file). When we use printf() in our program, we must
include stdio.h header file using #include<stdio.h> statement.
C Programming Language provides the following header files with standard functions.

Header
File

Purpose Example Functions

stdio.h Provides functions to perform standard I/O operations printf(), scanf()

conio.h Provides functions to perform console I/O operations clrscr(), getch()

math.h Provides functions to perform mathematical operations sqrt(), pow()

string.h Provides functions to handle string data values strlen(), strcpy()

stdlib.h Provides functions to perform general functions calloc(), malloc()

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 154

time.h

ctype.h

setjmp.h Provides functions that are used in function calls

Provides functions to handle signals during programexecution signal.h

Provides Macro that is used to verify assumptions made
by the program

assert.h

Defines the location specific settings such as date
formats and currency symbols

locale.h

Used to get the arguments in a function if the arguments
are not specified by the function

stdarg.h

errno.h Provides macros to handle the system calls

float.h Provides constants related to floating point data values

Defines the maximum and minimum values of various
variable types like char, int and long

limits.h

stddef.h Defines various variable types

graphics.h Provides functions to draw graphics.

STANDARD „C‟ LIBRARY FUNCTIONS

1 : stdio.h

2 : stdlib.h

Provides functions to perform operations on time and
date

Provides functions to perform - testing and mapping of
character data values

assert()

setlocale()

setjump(),
longjump()

signal(), raise()

time(), localtime()

isalpha(), islower()

circle(), rectangle()

va_start(), va_end(),
va_arg()

Error, errno

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 155

 3 : string.h

4 : math.h

5 : ctype.h

6 : time.h

1 : STANDARD I/O LIBRARY FUNCTIONS <STDIO.H>

Functions

printf()

scanf()

gets(s)

getc(f)

getchar()

putc(c,f)

puts(s)

putchar(c)

fgetc(f)

fgets(s,I,f)

fprintf(f)

fscanf(f)

fputc(c,f)

fputs(s,f)

fread(s,il,i2,f) int

DataType

int

int

char

int

int

int

int

int

int

char

int

int

int

int

Purpose

Send data items to the standared output device.

Enter data items from the standard input device.

Enter string s from the standard input device.

Enter a string character from file f.

Enter a single character from the standard input device.

Send a single character to file f.

Send string s to the standard output device.

Send a single character to the standard output device.

Enter a single character from file f.

Enter string s, containing I characters, from file f.

Send data items to file f.

Enter data items from file f.

Send a single character to file f.

Send string s to file f.

Enter i2 data items, each of size i1 bytes, from file f.

Close file f, return 0 if file is successfully closed. fclose(f) int

2 : STANDARD LIBRARY FUNCTIONS <STDLIB.H>

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 156

Functions

abs(i)

atof(s)

calloc(u1,u2) void*

DataType

int

double

Purpose

Return the absolute value of i. Convert string s to a double-

precesion quantity. Allocate memory for an array having

u1 elements, each of

length u2 bytes. Return a pointer to the beginning of the

allocated space. Close all files and buffers, and terminate

the program. Free a block of allocated memory whose

beginning is

indicated by p.

exit(u)

free(p)

void

void

malloc(u)

rand()

realloc(p,u)

void*

int

void*

Return a random positive integer.
Allocate u bytes of new memory to the pointer variable p,
return a pointer to the beginning of the new memory
space.
Pass command string s to the operating system.
Initialize the random number generator.

system(s)

srand(u)

int

void

3 : STRING LIBRARY FUNCTIONS <STRING.H>

Functions

strlen()

strlwr()

strupr()

strcat()

strcpy()

strcmp()

strrev()

DataType Purpose

Finds length of string

Converts a string to lowercase

Converts a string to uppercase

Appends one string at the end of another

Copies a string into another

Compares two strings

Reverses string

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 157

4 : MATH LIBRARY FUNCTIONS <MATH.H>

Functions

acos(d)

atan(d)

asin(d)

ceil(d)

cos(d)

cosh(d)

exp(d)

fabs(d)

floor(d)

labs(l)

log(d)

pow(d1,d2)

sin(d)

sqrt(d)

tan(d)

DataType

double

double

double

double

double

double

double

double

double

long int

double

double

double

double

double

Purpose

Return the arc cosine of d.

Return the arc tangent of d.

Return the arc sine of d.

Return a value rounded up to the next higher integer.

Return the cosine of d.

Return the hyperbolic cosine of d.

Raise e to the power d.

Return the absolute value of d.

Return a value rounded down to the next lower integer.

Return the absolute value of l.

Return the natural logarithm of d.

Return d1 raised to the d2 power.

Return the sine of d.

Return squre root of d.

Return the tangent of d.

5 : CHARACTER LIBRARY FUNCTIONS <CTYPE.H>

Functions DataType Purpose

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 159

Storage Classes
In C language, each variable has a storage class which is used to define scope and life time of a
variable.

Storage: Any variable declared in a program can be stored either in memory or registers.
Registers are small amount of storage in CPU. The data stored in registers has fast access
compared to data stored in memory.

Storage class of a variable gives information about the location of the variable
in which it is stored, initial value of the variable, if storage class is not specified; scope of the
variable; life of the variable.

There are four storage classes in C programming.

1 : Automatic Storage class.

2 : Register Storage class.

3 : Static Storage class.

4 : External Storage class.

1: Automatic Storage class : To define a variable as automatic storage class, the keyword „auto‟
is used. By defining a variable as automatic storage class, it is stored in the memory. The default
value of the variable will be garbage value. Scope of the variable is within the block where it is
defined and the life of the variable is until the control remains within the block.

Syntax : auto data_type variable_name;

auto int a,b;

Example:

void main()

{

int detail;

or

auto int detail; //Both are same

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 160

 The variables a and b are declared as integer type and auto. The keyword auto is
not mandatory. Because the default storage class in C is auto.

Note: A variable declared inside a function without any storage class specification, is by default
an automatic variable. Automatic variables can also be called local variables because they
are local to a function.

Ex : void function1();

void function2();

void main()

{

OUTPUT

10

0

100 int x=100;

function2();

printf(“%d”,x);

}

void function1()

{

int x=10;

printf(“%d”,x);

}

void function2()

{

int x=0;

function1();

printf(“%d”,x);

}

2: Register Storage class : To define a variable as register storage class, the keyword
„register‟ is used. If CPU cannot store the variables in CPU registers, then the variables are

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 161

assumed as auto and stored in the memory. When a variable is declared as register, it is
stored in the CPU registers. The default value of the variable will be garbage value.
Scope of the variable within the block where it is defined and the life of the variables is until
the control remains within the block.

Register variable has faster access than normal variable. Frequently used variables are

kept in
register. Only few variables can be placed inside register.
NOTE : We can't get the address of register variable

Sytax : register data_type variable_name; Ex: register int i;

Ex : void demo();

void main()

OUTPUT

20

20

20

{

demo();

demo();

demo();

}

void demo()

{

register int i=20;

printf(“%d\n”,i);

i++;

}

3 : Static Storage class : When a variable is declared as static, it is stored in the memory. The
default value of the variable will be zero. Scope of the variable is within the block where it is
defined and the life of the variable persists between different function calls. To define a variable
as static storage class, the keyword „static‟ is used. A static variable can be initialized only
once, it cannot be reinitialized.

Syntax : static data_type variable_name;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 162

 Ex: static int i;

Ex : void demo();

void main()

OUTPUT

20

21

22

{

demo();

demo();

demo();

}

void demo()

{

static int i=20;

printf(“%d”,i);

i++;

}

4 : External Storage class : When a variable is declared as extern, it is stored in the memory.
The default value is initialized to zero. The scope of the variable is global and the life of the
variable is until the program execution comes to an end. To define a variable as external storage
class, the keyword „extern‟ is used. An extern variable is also called as a global variable.
Global variables remain available throughout the entire program. One important thing to
remember about global variable is that their values can be changed by any function in the
program.

Systax : extern data_type variable_name;

extern int i;

Ex:

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 163

int

number;

void main()

{ number=10;

}

fun1()

{

number=20;

}

fun2()

{

number=30;

}

Here the global variable number is available to all three functions.

Ex : void fun1();

void fun2();

int e=20;

void main()

{

fun1();

fun2();

}

void fun1()

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 164

 {

extern int e;

printf(“e number is :%d”,e);

}

void fun2()

{

printf(“e number is :%d”,e);

}

extern keyword

The extern keyword is used before a variable to inform the compiler that this variable is declared
somewhere else. The extern declaration does not allocate storage for variables.
Problem when extern is not used

main()

{

a = 10; //Error:cannot find variable a

printf("%d",a);

}

Example Using extern in same file

main()

{

extern int x; //Tells compiler that it is defined somewhere else

x = 10;

printf("%d",x);

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 165

int x; //Global variable x

Storage
Classes

Storage
Place

Default
Value

Scope Life-time

auto

static

extern

register

RAM

RAM

RAM

Register

Zero

Garbage

Value

Zero

Garbage

Value

Local

Local

Local

Global

Within function

Till the end of main program, May be

declared anywhere in the program

Till the end of main program, Retains

value between multiple functions call

Within function

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 166

Recursion
When function is called within the same function, it is known as recursion in C. The function
which calls the same function, is known as recursive function.

A function that calls itself, and doesn't perform any task after function call, is know as tail
recursion. In tail recursion, we generally call the same function with return statement.
Features :

recursionfunction(){

recursionfunction();//calling self function

}

 There should be at least one if statement used to terminate recursion.

 It does not contain any looping statements.

Advantages :

 It is easy to use.

 It represents compact programming structures.

Disadvantages :

 It is slower than that of looping statements because each time function is called.

Note: while using recursion, programmers need to be careful to define an exit condition from the
function, otherwise it will go into an infinite loop. Recursive functions are very useful to solve
many mathematical problems, such as calculating the factorial of a number, generating Fibonacci
series, etc.

Example of recursion. TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 167

Example of tail recursion in C

// print factorial number using tail recursion

#include<stdio.h

>

#include<conio.h

> int factorial (int

n) { if (n < 0)

return -1; /*Wrong value*/

if (n == 0)

return 1; /*Terminating condition*/

return (n * factorial (n -1));

}

void main(){

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 168

int fact=0;

clrscr();

fact=factorial(5);

printf("\n factorial of 5 is %d",fact);

getch(); } Outputfactorial of 5 is 120

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 169

Preprocessor Commands

The C Preprocessor is not a part of the compiler, but is a separate step in the compilation
process. In simple terms, a C Preprocessor is just a text substitution tool and it instructs the

A program in C language involves into different processes. Below diagram will help you to
understand all the processes that a C program comes across.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 170

compiler to do required pre-processing before the actual compilation. All preprocessor
commands begin with a hash symbol (#).

list of preprocessor directives.

o

o

o

o

o

o

o

o

o

o

#include

#define

#undef

#ifdef

#ifndef

#if

#else

#elif

#endif

#error

o #pragma

C Macros

A macro is a segment of code which is replaced by the value of macro. Macro is defined by
#define directive. There are two types of macros:

1. Object-like Macros

2. Function-like Macros

Object-like Macros

The object-like macro is an identifier that is replaced by value. It is widely used to represent
numeric constants. For example:

#define PI 3.14

Here, PI is the macro name which will be replaced by the value 3.14.

Function-like Macros

The function-like macro looks like function call. For example:

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 171

#define MIN(a,b) ((a)<(b)?(a):(b))

Here, MIN is the macro name.

Predefined Macros

There are some predefined macros which are readily for use in C programming.

No. Macro Description

1 _DATE_ represents current date in "MMM DD YYYY" format.

2 _TIME_ represents current time in "HH:MM:SS" format.

3 _FILE_ represents current file name.

4 _LINE_ represents current line number.

5 _STDC_ It is defined as 1 when compiler complies with the ANSI standard.

#include <stdio.h>

main() {

printf("File :%s\n", __FILE__);

printf("Date :%s\n", __DATE__);

printf("Time :%s\n", __TIME__);

printf("Line :%d\n", __LINE__);

printf("ANSI :%d\n", __STDC__);

}

Output

File :test.c

Date :Jun 2 2012

Time :03:36:24

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 172

Line :8

ANSI :1

C #include

The #include preprocessor directive is used to paste code of given file into current file. It is used
include system-defined and user-defined header files. If included file is not found, compiler
renders error.

By the use of #include directive, we provide information to the preprocessor where to look for
the header files. There are two variants to use #include directive.

1. #include <filename>

2. #include "filename"

The #include <filename> tells the compiler to look for the directory where system header files
are held. In UNIX, it is \usr\include directory.
The #include "filename" tells the compiler to look in the current directory from where program
is running.
#include directive example

Let's see a simple example of #include directive. In this program, we are including stdio.h file
because printf() function is defined in this file.

1. #include <stdio.h>

2. main() {

3.

4. }

Output:

Hello C

#include notes:

Note 1: In #include directive, comments are not recognized. So in case of #include <a//b>, a//b is
treated as filename.
Note 2: In #include directive, backslash is considered as normal text not escape sequence. So in
case of #include <a\nb>, a\nb is treated as filename.

printf("Hello C"); TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 173

Note 3: You can use only comment after filename otherwise it will give error.

C #define

The #define preprocessor directive is used to define constant or micro substitution. It can use any
basic data type.
Syntax:

#define token value

Example of #define to define a constant.

#include <stdio.h>

#define PI 3.14

main() {

printf("%f",PI);

}

Output:

3.140000

Example of #define to create a macro.

#include <stdio.h>

#define MIN(a,b) ((a)<(b)?(a):(b))

void main() {

printf("Minimum between 10 and 20 is: %d\n", MIN(10,20));

}

Output:

Minimum between 10 and 20 is: 10

C #undef

The #undef preprocessor directive is used to undefine the constant or macro defined by #define.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 174

Syntax:

#undef token

Simple example to define and undefine a constant.

#include <stdio.h>

#define PI 3.14

#undef PI

main() {

printf("%f",PI);

}

Output:

Compile Time Error: 'PI' undeclared

The #undef directive is used to define the preprocessor constant to a limited scope so that you
can declare constant again.
Let's see an example where we are defining and undefining number variable. But before being
undefined, it was used by square variable.

#include <stdio.h>

#define number 15

int square=number*number;

#undef number

main() {

printf("%d",square);

}

Output:

225

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 175

C #ifdef

The #ifdef preprocessor directive checks if macro is defined by #define. If yes, it
executes the code otherwise #else code is executed, if present.
Syntax:

#ifdef MACRO

//code

#endif

Syntax with #else:

#ifdef MACRO

//successful code

#else

//else code

#endif

C #ifdef example

#include <stdio.h>

#include <conio.h>

#define NOINPUT

void main() {

int a=0;

#ifdef NOINPUT

a=2;

#else

printf("Enter a:");

scanf("%d", &a);

#endif

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 176

printf("Value of a: %d\n", a);

getch();

}

Output:

Value of a: 2

if you don't define NOINPUT, it will ask user to enter a number.

#include <stdio.h>

#include <conio.h>

void main() {

int a=0;

#ifdef NOINPUT

a=2;

#else

printf("Enter a:");

scanf("%d", &a);

#endif

printf("Value of a: %d\n", a);

getch();

}

Output:

Enter a:5

Value of a: 5

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 177

C #ifndef

The #ifndef preprocessor directive checks if macro is not defined by #define. If yes, it executes
the code otherwise #else code is executed, if present.
Syntax:

#ifndef MACRO

//code

#endif

Syntax with #else:

#ifndef MACRO

//successful code

#else

//else code

#endif

C #ifndef example

simple example to use #ifndef preprocessor directive.

#include <stdio.h>

#include <conio.h>

#define INPUT

void main() {

int a=0;

#ifndef INPUT

a=2;

#else

printf("Enter a:");

scanf("%d", &a);

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 178

#endif

printf("Value of a: %d\n", a);

getch();

}

Output:

Enter a:5

Value of a: 5

if you don't define INPUT, it will execute the code of #ifndef.

#include <stdio.h>

#include <conio.h>

void main() {

int a=0;

#ifndef INPUT

a=2;

#else

printf("Enter a:");

scanf("%d", &a);

#endif

printf("Value of a: %d\n", a);

getch();

}

Output:

Value of a: 2

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 179

C #if

The #if preprocessor directive evaluates the expression or condition. If condition is true, it
executes the code otherwise #elseif or #else or #endif code is executed.
Syntax:

#if expression

//code

#endif

Syntax with #else:

#if expression

//if code

#else

//else code

#endif

Syntax with #elif and #else:

#if expression

//if code

#elif expression

//elif code

#else

//else code

#endif

C #if example

#include <stdio.h>

#include <conio.h>

#define NUMBER 0

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 180

void main() {

#if (NUMBER==0)

printf("Value of Number is: %d",NUMBER);

#endif

getch();

}

Output:

Value of Number is: 0

Another example to understand the #if directive clearly.

#include <stdio.h>

#include <conio.h>

#define NUMBER 1

void main() {

clrscr();

#if (NUMBER==0)

printf("1 Value of Number is: %d",NUMBER);

#endif

#if (NUMBER==1)

printf("2 Value of Number is: %d",NUMBER);

#endif

getch();

}

Output:

2 Value of Number is: 1

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 181

C #else

The #else preprocessor directive evaluates the expression or condition if condition of #if is false.
It can be used with #if, #elif, #ifdef and #ifndef directives.
Syntax:

#if expression

//if code

#else

//else code

#endif

Syntax with #elif:

#if expression

//if code

#elif expression

//elif code

#else

//else code

#endif

C #else example

#include <stdio.h>

#include <conio.h>

#define NUMBER 1

void main() {

#if NUMBER==0

printf("Value of Number is: %d",NUMBER);

#else

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 182

print("Value of Number is non-zero");

#endif

getch();

}

Output:

Value of Number is non-zero

C #error

The #error preprocessor directive indicates error. The compiler gives fatal error if #error
directive is found and skips further compilation process.
C #error example

#include<stdio.h>

#ifndef __MATH_H

#error First include then compile

#else

void main(){

float a;

a=sqrt(7);

printf("%f",a);

}

#endif

Output:

Compile Time Error: First include then compile

if you include math.h, it does not gives error.

#include<stdio.h>

#include<math.h>

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 183

#ifndef __MATH_H

#error First include then compile

#else

void main(){

float a;

a=sqrt(7);

printf("%f",a);

}

#endif

Output:

2.645751

C #pragma

The #pragma preprocessor directive is used to provide additional information to the compiler.
The #pragma directive is used by the compiler to offer machine or operating-system feature.
Syntax:

#pragma token

Different compilers can provide different usage of #pragma directive.

The turbo C++ compiler supports following #pragma directives.

#pragma argsused

#pragma exit

#pragma hdrfile

#pragma hdrstop

#pragma inline

#pragma option

#pragma saveregs

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 184

#pragma startup

#pragma warn

Example to use #pragma preprocessor directive.

#include<stdio.h>

#include<conio.h>

void func() ;

#pragma startup func

#pragma exit func

void main(){

printf("\nI am in main");

getch();

}

void func(){

printf("\nI am in func");

getch();

}

Output:

I am in func

I am in main

I am in func

KEY POINTS TO REMEMBER:

1. Source program is converted into executable code through different processes like
precompilation, compilation, assembling and linking.

2. Local variables uses stack memory.

3. Dynamic memory allocation functions use the heap memory.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 185

Macro

Header file
inclusion

Conditional
compilatio
n

preprocessor Syntax/Description

Stack is a memory region where “local
variables”, “return addresses of function
calls” and “arguments to functions” are
hold while C program is executed.

Syntax: #define
This macro defines constant value and can be any
of the basic data types.

Syntax: #ifdef, #endif, #if, #else, #ifndef
Set of commands are included or excluded in
source program before compilation with respect to
the condition.

Syntax: #include <file_name>
The source code of the file “file_name” is included
in the main program at the specified place.

Syntax: #undef, #pragma
#undef is used to undefine a defined macro
variable. #Pragma is used to call a function before
and after main function in a C program. Other directives

DIFFERENCE BETWEEN STACK & HEAP MEMORY IN C LANGUAGE?

Stack Heap

Heap is a memory region
which is used by dynamic
memory allocation
functions at run time.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 186

#define

#include

Program speed is fast.

Compiler reads the entire source
code of the program and converts
it into binary code. This process
is called compilation.

Binary code is also referred as
machine code, executable, and
object code.

Substitutes a preprocessor macro.

Inserts a particular header from another file.

Program speed is slow.

Interpretation occurs at every line
of the program.
Example: BASIC

One time execution.
Example: C, C++

The following section lists down all the important preprocessor directives −

Directive Description

Interpreter reads the program
source code one line at a time and
executing that line. This process is
called interpretation.

CPU‟s current state is saved in stack
memory

Linked list is an example
which uses heap memory.

DIFFERENCE BETWEEN COMPILERS VS INTERPRETERS IN C LANGUAGE?

Compilers Interpreters

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 187

#if

#elif

#else

#ifdef

#error

#endif

#undef

#ifndef

The alternative for #if.

#else and #if in one statement.

Prints error message on stderr.

Ends preprocessor conditional.

Undefines a preprocessor macro.

Returns true if this macro is defined.

Returns true if this macro is not defined.

Tests if a compile time condition is true.

#pragma Issues special commands to the compiler, using a standardized method.

There are three types of preprocessor commands.

1 : macro substitution.

2 : file inclusion.

3 : conditional compilation directives.

1: Macro Substitution : They are two types of macro substitution.

1 : Macro substitution without arguments.

2 : Macro substitution with arguments.

1 : Macro substitution without arguments : It is a process to substitute the constant or value in
the place of an identifier. It is possible to achieve this with the help of directive or macro
definition statement #define.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 188

 Syntax : #define identifier constant or expression

Ex : #define PI 3.142

#define MAX_MARKS 100

#define MIN_MARKS 35

Ex :

#include <stdio.h>

#define height 100

#define number 3.14

#define letter 'A'

#define letter_sequence "ABC"

#define backslash_char '\?'

void main()

{

printf("value of height : %d \n", height);

printf("value of number : %f \n", number);

printf("value of letter : %c \n", letter);

printf("value of letter_sequence : %s \n", letter_sequence);

printf("value of backslash_char : %c \n", backslash_char);

}

OUTPUT:

value of height : 100

value of number : 3.140000

value of letter : A

value of letter_sequence : ABC

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 189

value of backslash_char : ?

Ex : Example of Macro substitution

#include<stdio.h>

#define PI 3.142

void main()

{

int r;

float area;

printf(“Enter the radius of circle”);

scanf(“%d”,&r);

area=PI*r*r;

printf(“the area of a circle is%d”,area);

}

Example of Macro definition with expressions

#define A (20*10)

#define B (200-100)

void main()

{

int div;

div=A/B;

printf(“the division of two numbers%d”,div);

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 190

 Example of Macro definition with conditional expression

#define IFCONDITION if(a>b)

#define PRINT printf(“the value of a is the greatest no”)

void main()

{

int

a=100,b=50;

IFCONDITION PRINT;

}

Macro Substitution with Arguments :

Syntax : #define identifier(var1,var2,va3,….varn)string

Where identifier is the name of macro function with the list of macro formal parameters
var1,var2,var3,…varn like the formal parameters in a function definition.

Ex : #define PROD(x) (x*x)

void main()

{

int a,mul;

printf(“enter the value of a”);

scanf(“%d”,&a);

mul=PROD(a);

printf(“The multification of two numbers%d”,mul);

}

2 : FILE INCLUSION : A copying of one file to another files into program.

Ex : File inclusion of an external file “add.c”.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 191

 #include<stdio.h>

#include add.c

void main()

{

void add(); //FUNCTION PROTOTYPE/ DECLARATION.

add(); //FUNCTION CALLING

}

The file add1.c contains the function definition as follows.

void add()

{

int a,b,c;

printf(“enter two numbers”);

scanf(%d%d”,&a,&b);

c=a+b;

printf(“c value is:%d”,c);

}

3 : CONDITIONAL COMPILATION DIRECTIVES : C preprocessor also supports number
of conditional compilation directives as

1 : #undef

2 : #ifdef

3 : #endif

4 : #if

5 : #else

: Undefined a macro

: Tests for a macro definition.

: Specifies the end of #if.

: Tests compile-time condition.

: Specifies alternative when #if test fails.

These are used to select a particular segment of code for compilation depending on the
condition.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 192

EXAMPLE PROGRAM FOR CONDITIONAL COMPILATION DIRECTIVES:

A) EXAMPLE PROGRAM FOR #IFDEF, #ELSE AND #ENDIF IN C:

 “#ifdef” directive checks whether particular macro is defined or not. If it is defined, “If”
clause statements are included in source file.
Otherwise, “else” clause statements are included in source file for compilation and
execution.



Ex:

#include <stdio.h>

#define RAJU 100

int main()

{

#ifdef RAJU

printf("RAJU is defined. So, this line will be added in " \

"this C file\n");

#else

printf("RAJU is not defined\n");

#endif

return 0;

}

OUTPUT:

RAJU is defined. So, this line will be added in this C file

B) EXAMPLE PROGRAM FOR #IFNDEF AND #ENDIF IN C:

 #ifndef exactly acts as reverse as #ifdef directive. If particular macro is not defined, “If”
clause statements are included in source file.
Otherwise, else clause statements are included in source file for compilation and
execution.



TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 193

Ex: #include <stdio.h>
#define RAJU 100 int
main() {

#ifndef SELVA
{

printf("SELVA is not defined. So, now we are going to " \
"define here\n");

#define SELVA 300
}
#else
printf("SELVA is already defined in the program”);

#endif
return 0;

}
OUTPUT:
SELVA is not defined. So, now we are going to define here

C) EXAMPLE PROGRAM FOR #IF, #ELSE AND #ENDIF IN C:





“If” clause statement is included in source file if given condition is true.

Otherwise, else clause statement is included in source file for compilation and execution.

Ex:

#include <stdio.h>
#define a 100
int main()
{

#if (a==100)
printf("This line will be added in this C file since " \

"a \= 100\n");
#else
printf("This line will be added in this C file since " \

"a is not equal to 100\n");
#endif
return 0;

}

OUTPUT:

This line will be added in this C file since a = 100

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 194

EXAMPLE PROGRAM FOR UNDEF IN C LANGUAGE:
This directive undefines existing macro in the program.

Ex:

#include <stdio.h>

#define height 100

void main()

{

printf("First defined value for height : %d\n",height);

#undef height

#define height 600

// undefining variable

// redefining the same for new value

printf("value of height after undef \& redefine:%d",height);

}

OUTPUT:

First defined value for height : 100

value of height after undef & redefine : 600

EXAMPLE PROGRAM FOR PRAGMA IN C LANGUAGE:

Pragma is used to call a function before and after main function in a C program.

Ex:

#include <stdio.h>

void function1();

void function2();

#pragma startup function1

#pragma exit function2

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 195

int main()

{

printf ("\n Now we are in main function") ;

return 0;

}

void function1()

{

printf("\nFunction1 is called before main function call");

}

void function2()

{

printf ("\nFunction2 is called just before end of " \

"main function") ;"

}

OUTPUT:

Function1 is called before main function call

Now we are in main function

Function2 is called just before end of main function

Ex : #define TEST 1

void main()

{

#ifdef TEST

{

printf(“This is compiled”);

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 196

 }

#else

{

printf(“This is not compiled”);

}

#endif

}

Ex2 : : #define FLAG 1

char ch;

void main()

{

#if FLAG

{

ch=‟t‟;

printf(“This is compiled”);

}

#else

{

ch=‟f‟;

printf(“This is not compiled”);

}

#endif

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 197

POINTERS:
Introduction

Definition:

Benefit of using pointers





Pointers are more efficient in handling Array and Structure.

Pointer allows references to function and thereby helps in passing of function as
arguments to other function.
It reduces length and the program execution time.

It allows C to support dynamic memory management.




Declaration of Pointer

data_type* pointer_variable_name;

int* p;

Note: void type pointer works with all data types, but isn't used often.

Initialization of Pointer variable

Pointer Initialization is the process of assigning address of a variable to pointer variable.
Pointer variable contains address of variable of same data type
int a = 10 ;

int *ptr ;

ptr = &a ;

or,

//pointer declaration

//pointer initialization

Pointer is a variable that stores/hold address of another variable of same data type/ t is
also known as locator or indicator that points to an address of a value. A pointer is a
derived data type in C

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 198

int *ptr = &a ; //initialization and declaration together

Note:Pointer variable always points to same type of data.

float a;

int *ptr;

ptr = &a; //ERROR, type mismatch

Above statement defines, p as pointer variable of type int. Pointer example

As you can see in the above figure, pointer variable stores the address of number variable i.e.
fff4. The value of number variable is 50. But the address of pointer variable p is aaa3.
By the help of * (indirection operator), we can print the value of pointer variable p.

Reference operator (&) and Dereference operator (*)

& is called reference operator. It gives you the address of a variable. There is another operator
that gets you the value from the address, it is called a dereference operator (*).
Symbols used in pointer

Symbol Name Description

& (ampersand sign) address of operator determines the address of a variable.

* (asterisk sign) indirection operator accesses the value at the address.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 199

Dereferencing of Pointer

Once a pointer has been assigned the address of a variable. To access the value of variable,
pointer is dereferenced, using the indirection operator *.
int a,*p;

a = 10;

p = &a;

printf("%d",*p); //this will print the value of a.

printf("%d",*&a); //this will also print the value of a.

printf("%u",&a); //this will print the address of a.

printf("%u",p); //this will also print the address of a.

printf("%u",&p); //this will also print the address of p.

KEY POINTS TO REMEMBER ABOUT POINTERS IN C:

 Normal variable stores the value whereas pointer variable stores the address of the
variable.
The content of the C pointer always be a whole number i.e. address.

Always C pointer is initialized to null, i.e. int *p = null.

The value of null pointer is 0.

& symbol is used to get the address of the variable.

* symbol is used to get the value of the variable that the pointer is pointing to.

If a pointer in C is assigned to NULL, it means it is pointing to nothing.

Two pointers can be subtracted to know how many elements are available between these
two pointers.
But, Pointer addition, multiplication, division are not allowed.

The size of any pointer is 2 byte (for 16 bit compiler).



















TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 200

Example:

#include <stdio.h>

#include <conio.h>

void main(){

int number=50;

int *p;

clrscr();

p=&number;//stores the address of number variable

printf("Address of number variable is %x \n",&number);

printf("Address of p variable is %x \n",p);

printf("Value of p variable is %d \n",*p);

getch();

}

Output

Address of number variable is fff4

Address of p variable is fff4

Value of p variable is 50

Example:

#include <stdio.h>

int main()

{

int *ptr, q;

q = 50;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 201

 /* address of q is assigned to ptr */

ptr = &q;

/* display q's value using ptr variable */

printf("%d", *ptr);

return 0;

}

Output

50

Example:

#include <stdio.h>

int main()

{

int var =10;

int *p;

p= &var;

printf ("\n Address of var is: %u", &var);

printf ("\n Address of var is: %u", p);

printf ("\n Address of pointer p is: %u", &p);

/* Note I have used %u for p's value as it should be an address*/

printf("\n Value of pointer p is: %u", p);

printf ("\n Value of var is: %d", var);

printf ("\n Value of var is: %d", *p);

printf ("\n Value of var is: %d", *(&var));

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 202

Pointers can point to other pointers /pointer refers to the address of another pointer.

pointer can point to the address of another pointer which points to the address of a value.

Output:

Address of var is: 00XBBA77

Address of var is: 00XBBA77

Address of pointer p is: 77221111

Value of pointer p is: 00XBBA77

Value of var is: 10

Value of var is: 10

Value of var is: 10

NULL Pointer

A pointer that is not assigned any value but NULL is known as NULL pointer. If you don't have
any address to be specified in the pointer at the time of declaration, you can assign NULL value.
Or

It is always a good practice to assign a NULL value to a pointer variable in case you do not have
an exact address to be assigned. This is done at the time of variable declaration. A pointer that is
assigned NULL is called a null pointer.int *p=NULL;

Note: The NULL pointer is a constant with a value of zero defined in several standard libraries/
in most the libraries, the value of pointer is 0 (zero)
Example:

The value of ptr is 0

Pointers for Inter‐Function Communication

Pointers to Pointers

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 203

Example:

#include <stdio.h>

#include <conio.h>

void main(){

int number=50;

int *p;//pointer to int

int **p2;//pointer to pointer

clrscr();

p=&number;//stores the address of number variable

p2=&p;

printf("Address of number variable is %x \n",&number);

printf("Address of p variable is %x \n",p);

syntax of pointer to pointer

int **p2;

pointer to pointer example

Let's see an example where one pointer points to the address of another pointer.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 204

printf("Value of *p variable is %d \n",*p);

printf("Address of p2 variable is %x \n",p2);

printf("Value of **p2 variable is %d \n",**p);

getch();

}

Output

Address of number variable is fff4

Address of p variable is fff4

Value of *p variable is 50

Address of p2 variable is fff2

Value of **p variable is 50

When an array is declared, compiler allocates sufficient amount of memory to contain all the
elements of the array. Base address which gives location of the first element is also allocated by
the compiler.

Suppose we declare an array arr,

int arr[5]={ 1, 2, 3, 4, 5 };

Assuming that the base address of arr is 1000 and each integer requires two byte, the five
element will be stored as follows

Arrays and Pointers

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 205

Here variable arr will give the base address, which is a constant pointer pointing to the
element, arr[0]. Therefore arr is containing the address of arr[0] i.e 1000.

arr is equal to &arr[0] // by default

We can declare a pointer of type int to point to the array arr.

int arr[5]={ 1, 2, 3, 4, 5 };

int *p;

p = arr;

or p = &arr[0]; //both the statements are equivalent.

Now we can access every element of array arr using p++ to move from one element to another.

NOTE : You cannot decrement a pointer once incremented. p-- won't work.

Pointer to Array

we can use a pointer to point to an Array, and then we can use that pointer to access the array.
Lets have an example,
int i;

int a[5] = {1, 2, 3, 4, 5};

int *p = a; // same as int*p = &a[0]

for (i=0; i<5; i++)

{

printf("%d", *p);

p++;

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 206

Consider an array:

int arr[4];

In C programming, name of the array always points to address of the first element of an array.

In the above example, arr and &arr[0] points to the address of the first element.

&arr[0] is equivalent to arr

Since, the addresses of both are the same, the values of arr and &arr[0] are also the same.

arr[0] is equivalent to *arr (value of an address of the pointer)

In the above program, the pointer *p will print all the values stored in the array one by one. We
can also use the Base address (a in above case) to act as pointer and print all the values.

Relation between Arrays and Pointers

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 207

Similarly, &arr[1] is equivalent to (arr + 1) AND, arr[1] is equivalent

to *(arr + 1). &arr[2] is equivalent to (arr + 2) AND, arr[2] is

equivalent to *(arr + 2). &arr[3] is equivalent to (arr + 3) AND, arr[3]

is equivalent to *(arr + 3). . . &arr[i] is equivalent to (arr + i) AND,

arr[i] is equivalent to *(arr + i).

Example: Program to find the sum of six numbers with arrays and pointers

#include <stdio.h>

int main()

{

int i, classes[6],sum = 0;

printf("Enter 6 numbers:\n");

for(i = 0; i < 6; ++i)

{

// (classes + i) is equivalent to &classes[i]

scanf("%d",(classes + i));

// *(classes + i) is equivalent to classes[i]

sum += *(classes + i);

}

printf("Sum = %d", sum);

return 0;

}

Output

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 208

Enter 6 numbers: 2 3 4 5 3 4 Sum = 21

Pointer Arithmetic and Arrays
pointer holds address of a value, so there can be arithmetic operations on the pointer

variable. There are four arithmetic operators that can be used on pointers:

o

o

o

o

Increment(++)
Decrement(--)
Addition(+)

Subtraction(-)

Increment pointer:

1. Incrementing Pointer is generally used in array because we have contiguous memory in
array and we know the contents of next memory location.

2. Incrementing Pointer Variable Depends Upon data type of the Pointer variable.

The formula of incrementing pointer is given below:

new_address= current_address + i * size_of(data type)

Three rules should be used to increment pointer

Address + 1 = Address

Address++ = Address

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 209

++Address = Address

Pictorial Representation :

Data
Type

Older Address stored Next Address stored
in pointer incrementing (ptr++)

int 1000 1002

float 1000 1004

char 1000 1001

Note :

32 bit

For 32 bit int variable, it will increment to 2 byte.

64 bit

For 64 bit int variable, it will increment to 4 byte.

Example:

#include <stdio.h>

void main(){

int number=50;

in pointer after

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 210

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p+1;

printf("After increment: Address of p variable is %u \n",p);

}

Output

Address of p variable is 3214864300

After increment: Address of p variable is 3214864304

Decrement(--)

Like increment, we can decrement a pointer variable.

formula of decrementing pointer

new_address= current_address - i * size_of(data type)

Example:

#include <stdio.h>

void main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p-1;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 211

printf("After decrement: Address of p variable is %u \n",p);

}

Output

Address of p variable is 3214864300

After decrement: Address of p variable is 3214864296

Addition(+)

We can add a value to the pointer variable.

formula of adding value to pointer

new_address= current_address + (number * size_of(data type))

Note:

32 bit

For 32 bit int variable, it will add 2 * number.

64 bit

For 64 bit int variable, it will add 4 * number.

Example:

#include <stdio.h>

void main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 212

p=p+3; //adding 3 to pointer variable

printf("After adding 3: Address of p variable is %u \n",p);

}

Output

Address of p variable is 3214864300

After adding 3: Address of p variable is 3214864312

Subtraction (-)

Like pointer addition, we can subtract a value from the pointer variable. The formula
of subtracting value from pointer variable.

new_address= current_address - (number * size_of(data type))

Example:

#include <stdio.h>

void main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p-3; //subtracting 3 from pointer variable

printf("After subtracting 3: Address of p variable is %u \n",p);

}

Output

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 213

Address of p variable is 3214864300

After subtracting 3: Address of p variable is 3214864288

If you want to pass a single-dimension array as an argument in a function, you would
have to declare a formal parameter in one of following three ways and all three
declaration methods produce similar results because each tells the compiler that an
integer pointer is going to be received. Similarly, you can pass multi-dimensional arrays
as formal parameters.

1) Formal parameters as a pointer –
void myFunction(int *param) {

.

.

.
}

2) Formal parameters as a sized array –
void myFunction(int param[10]) {

.
.
.

}

3) Formal parameters as an unsized array −
void myFunction(int param[10]) {

.

.
.

}
Example1: pass an entire array to a function argument

#include <stdio.h>
/* function declaration */

double getAverage(int arr[], int size);
int main () {

/* an int array with 5 elements */
int balance[5] = {1000, 2, 3, 17, 50};

Passing an Array to a Function

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 214

 double avg;

/* pass pointer to the array as an argument */
avg = getAverage(balance, 5) ;
/* output the returned value */

printf("Average value is: %f ", avg);
return 0;

}
double getAverage(int arr[], int size) {

int i;
double avg;
double sum = 0;

for (i = 0; i < size; ++i) {
sum += arr[i];

}

avg = sum / size;

return avg;
}

Output
Average value is: 214.400000

Example2: pass an entire array to a function argument
#include <stdio.h>
myfuncn(int *var1, int var2)
{

for(int x=0; x<var2; x++)
{

printf("Value of var_arr[%d] is: %d \n", x, *var1);
/*increment pointer for next element fetch*/
var1++;

}
}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 215

int main()
{

int var_arr[] = {11, 22, 33, 44, 55, 66, 77};
myfuncn(&var_arr, 7);
return 0;

} Output
 Value of var_arr[0] is: 11
Value of var_arr[1] is: 22
Value of var_arr[2] is: 33
Value of var_arr[3] is: 44
Value of var_arr[4] is: 55
Value of var_arr[5] is: 66
Value of var_arr[6] is: 77

Example: Call by value method –
#include <stdio.h>
disp(char ch)
{

printf("%c ", ch);
}
int main()
{

char arr[] = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'I', 'j'};
for (int x=0; x<=10; x++)
{

/* I‟m passing each element one by one using subscript*/
disp (arr[x]);

}

return 0;
}
Output:
a b c d e f g h i j

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 216

In this method of calling a function, the actual arguments gets copied into formal
arguments. In this example actual argument(or parameter) is arr[x] and formal
parameter is ch.

Example: Call by reference method: Using pointers

#include <stdio.h>

disp(int *num)

{

printf("%d ", *num);

}

int main()

{

int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};

for (int i=0; i<=10; i++)

{

/* I‟m passing element‟s address*/

disp (&arr[i]);

}

return 0;

}

Output:

1 2 3 4 5 6 7 8 9 0

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 217

Array of Pointers
 An array of pointers would be an array that holds memory locations. An array of pointers is an
indexed set of variables in which the variables are pointers (a reference to a location in memory).

Array alpha[]

alpha[0]

alpha[1]

alpha[2]

alpha[3]

alpha[n]

Example1:

#include <stdio.h>

const int MAX = 3;

int main () {

int var[] = {10, 100, 200};

int i, *ptr[MAX];

for (i = 0; i < MAX; i++) {

Pointer a

*a

*(a+1)

*(a+2)

*(a+3)

*(a+n)

Syntax:

data_type_name * variable name

Example

int *ptr[MAX];

TechByWebCoder

@techbywebcoder

https://www.computerhope.com/jargon/v/variable.htm
https://www.computerhope.com/jargon/v/variable.htm
https://www.computerhope.com/jargon/v/variable.htm
https://www.computerhope.com/jargon/p/pointer.htm
https://www.computerhope.com/jargon/p/pointer.htm
https://www.computerhope.com/jargon/p/pointer.htm
https://www.computerhope.com/jargon/m/memory.htm
https://www.computerhope.com/jargon/m/memory.htm
https://www.computerhope.com/jargon/m/memory.htm

C PROGRAMMING Page 218

 ptr[i] = &var[i]; /* assign the address of integer. */

}

for (i = 0; i < MAX; i++) {

printf("Value of var[%d] = %d\n", i, *ptr[i]);

}

return 0;

}

Output

Value of var[0] = 10

Value of var[1] = 100

Value of var[2] = 200

Example2:

#include <stdio.h>
#include <conio.h>
main() {

clrscr();
int *array[3];
int x = 10, y = 20, z = 30;
int i;
array[0] = &x;
array[1] = &y;
array[2] = &z;
for (i=0; i< 3; i++) {
printf("The value of %d= %d ,address is %u\t \n", i, *(array[i]),
array[i]);
}
getch();

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 219

 return 0;
}

Output

Example3:

#include <stdio.h>

const int MAX = 4;

int main () {

char *names[] = {

"Zara Ali",

"Hina Ali",

"Nuha Ali",

"Sara Ali"

};

int i = 0;

for (i = 0; i < MAX; i++) {

printf("Value of names[%d] = %s\n", i, names[i]);

}

return 0;

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 220

Output:

Value of names[0] = Zara Ali

Value of names[1] = Hina Ali

Value of names[2] = Nuha Ali

Value of names[3] = Sara Ali

Example4:

#include <stdio.h>

int main()

{

char *fruit[] = {

"watermelon",

"banana",

"pear",

"apple",

"coconut",

"grape",

"blueberry"

};

int x;

for(x=0;x<7;x++)

puts(fruit[x]);

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 221

 return(0);

}

3. In C General Purpose Pointer is called as void Pointer.

4. It does not have any data type associated with it

5. It can store address of any type of variable

6. A void pointer is a C convention for a raw address.

7. The compiler has no idea what type of object a void Pointer really points to ?

Pointers to Void

Note:

1. Suppose we have to declare integer pointer, character pointer and float pointer then we
need to declare 3 pointer variables.

2. Instead of declaring different types of pointer variable it is feasible to declare single
pointer variable which can act as integer pointer,character pointer.

A pointer variable declared using a particular data type can not hold the location address of
variables of other data types. It is invalid and will result in a compilation error.

Ex:- char *ptr;

int var1;

ptr=&var1; // This is invalid because „ptr‟ is a character pointer variable.

Here comes the importance of a “void pointer”. A void pointer is nothing but a pointer
variable declared using the reserved word in C „void‟.

Void Pointer Basics :

Pointers to Void and to Functions

TechByWebCoder

@techbywebcoder

http://www.c4learn.com/c-programming/c-pointer/
http://www.c4learn.com/c-programming/c-pointer/
http://www.c4learn.com/c-programming/c-pointer/

C PROGRAMMING Page 222

Void pointer: A void pointer is a pointer that has no associated data type with it. A void pointer
can hold address of any type and can be typcasted to any type. Special type of pointer called
void pointer or general purpose pointer.

Declaration of void pointer

void * pointer_name;

Void pointer example

void *ptr; // ptr is declared as Void pointer

char cnum;

int inum;

float fnum;

ptr = &cnum; // ptr has address of character data

ptr = &inum; // ptr has address of integer data

ptr = &fnum; // ptr has address of float data

Advantages of void pointers:

1) malloc() and calloc() return void * type and this allows these functions to be used to allocate
memory of any data type (just because of void *)

int main(void)

{

// Note that malloc() returns void * which can be

// typecasted to any type like int *, char *, ..

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 223

 int *x = malloc(sizeof(int) * n);

}

2) void pointers in C are used to implement generic functions in C.

Note:

1) void pointers cannot be dereferenced. For example the following program doesn‟t compile.

#include<stdio.h>

int main()

{

int a = 10;

void *ptr = &a;

printf("%d", *ptr);

return 0;

}
Output:
Compiler Error: 'void*' is not a pointer-to-object type

The following program compiles and runs fine.

#include<stdio.h>

int main()

{

int a = 10;
void *ptr = &a;

printf("%d", *(int *)ptr);

return 0;

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 224

<function return type>(*<Pointer_name>)(function argument list)

For example –

For example:

1) int *f(int a); /* function f returning an int * */

Output:

10

Summary : Void Pointer

Scenario Behavior

When We assign address of integer variable to Void Pointer Becomes Integer
void pointer Pointer

When We assign address of character variable to Void Pointer Becomes Character
void pointer Pointer

When We assign address of floating variable to Void Pointer Becomes Floating
void pointer Pointer

Pointers to functions/ Function Pointers
 A pointer to a function points to the address of the executable code of the function.
 We can use pointers to call functions and to pass functions as arguments to other

functions.
 We cannot perform pointer arithmetic on pointers to functions.
 The type of a pointer to a function is based on both the return type and parameter types of

the function.
 A declaration of a pointer to a function must have the pointer name in parentheses.
 The function call operator () has a higher precedence than the dereference operator *.

Without them, the compiler interprets the statement as a function that returns a pointer to
a specified return type.

declare Pointer to function?

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 225

In this declaration, f is interpreted as a function that takes an int as argument, and returns a
pointer to an int.

2) double (*p2f)(double, char)

Here double is a return type of function, p2f is pointer name & (double, char) is an
argument list for the function. Which means the first argument for this function should be
double and the second one would be of char type.

Example:

#include<stdio.h>

int sum (int num1, int num2)

{

return sum1+sum2;

}

int main()

{

int (*f2p) (int, int);

f2p = sum;

int op1 = f2p (10, 13);

int op2 = sum (10, 13);

printf("Output 1 – for function call via Pointer: %d",op1);

printf("Output2 – for direct function call: %d", op2);

return 0;

}

Output:

Output 1 – for function call via Pointer: 23

Output2 – for direct function call: 23

You would have noticed that the output of both the statements is same –
f2p(10, 13) == sum(10, 13)

which means in generic sense you can write it out as:

pointer_name(argument list) == function(same argument list)

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 226

memory
executing program.

can't be

used in array.

increased

memory is allocated at compile time.

wherein pointer_name is declared as:

return_type(*pointer_name)(argument list);

pointer_name = function_name(argument list);

while memory can be
executing program.

used in linked list.

memory is allocated at run time.

increased

The concept of dynamic memory allocation in c language enables the C programmer to
allocate memory at runtime.

Or

The process of allocating memory at runtime is known as dynamic memory allocation.
Library routines known as "memory management functions" are used for allocating and
freeing memory during execution of a program. These functions are defined in stdlib.h.

Dynamic memory allocation in c language is possible by 4 functions of stdlib.h header file.

1. malloc()
2. calloc()

3. realloc()

4. free()

Difference between static memory allocation and dynamic memory allocation.

static memory allocation dynamic memory allocation

while

Memory Allocation Functions

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 227

Methods used for dynamic memory allocation.

malloc() allocates single block of requested memory.

calloc() allocates multiple block of requested memory.

realloc() reallocates the memory occupied by malloc() or calloc() functions.

free() frees the dynamically allocated memory.

Note: Dynamic memory allocation related function can be applied for any data type that's why
dynamic memory allocation related functions return void*.
Memory Allocation Process

Global variables, static variables and program instructions get their memory
in permanent storage area whereas local variables are stored in area called Stack. The memory
space between these two region is known as Heap area. This region is used for dynamic memory
allocation during execution of the program. The size of heap keep changing.

malloc()

malloc stands for "memory allocation".
The malloc() function allocates single block of requested memory at runtime. This

function
reserves a block of memory of given size and returns a pointer of type void. This meansthat we
can assign it to any type of pointer using typecasting. It doesn't initialize memory at

execution
time, so it has garbage value initially. If it fails to locate enough space (memory) itreturns a
NULL pointer. syntax

ptr=(cast-type*)malloc(byte-size)

Example

int *x;

x = (int*)malloc(100 * sizeof(int)); //memory space allocated to variable x

free(x); //releases the memory allocated to variable x

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 228

This statement will allocate either 200 or 400 according to size of int 2 or 4 bytes respectively
and the pointer points to the address of first byte of memory.

Example
#include <stdio.h>

#include <stdlib.h>

int main()

{

int num, i, *ptr, sum = 0;

printf("Enter number of elements: ");

scanf("%d", &num);

ptr = (int*) malloc(num * sizeof(int)); //memory allocated using malloc

if(ptr == NULL)
{

printf("Error! memory not allocated.");

exit(0);

}

printf("Enter elements of array: ");

for(i = 0; i < num; ++i)

{

scanf("%d", ptr + i);

sum += *(ptr + i);

}

printf("Sum = %d", sum);

free(ptr);
return 0;

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 229

calloc() calloc stands for "contiguous allocation". Calloc() is another memory allocation

function that is used for allocating memory at
runtime. calloc function is normally used for allocating memory to derived data types such
as arrays and structures. The calloc() function allocates multiple block of requested memory.

It initially initialize (sets) all bytes to zero.If it fails to locate enough space(memory) it

returns a
NULL pointer. The only difference between malloc() and calloc() is that, malloc() allocates
single block of memory whereas calloc() allocates multiple blocks of memory each of same

size. Syntax ptr = (cast-type*)calloc(n/number, element-size);

calloc() required 2 arguments of type count, size-type.

Count will provide number of elements; size-type is data type size

Example

int*arr;

arr=(int*)calloc(10, sizeof(int));

cahr*str;

str=(char*)calloc(50, siceof(char)); // 50 byte

// 20 byte

Example

struct employee

{

char *name;

int salary;

};

typedef struct employee emp;

emp *e1;

e1 = (emp*)calloc(30,sizeof(emp));

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 230

Example

#include <stdio.h>

#include <stdlib.h>

int main()

{

int num, i, *ptr, sum = 0;

printf("Enter number of elements: ");

scanf("%d", &num);

ptr = (int*) calloc(num, sizeof(int));
if(ptr == NULL)

{

printf("Error! memory not allocated.");

exit(0);

}

printf("Enter elements of array: ");
for(i = 0; i < num; ++i)

{

scanf("%d", ptr + i);

sum += *(ptr + i);

}

printf("Sum = %d", sum);

free(ptr);

return 0;

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 231

Diffrence between malloc() and calloc()

calloc()

calloc() initializes the allocated memory with
0 value.

Number of arguments is 2

Syntax :

(cast_type *)calloc(blocks , size_of_block);

Syntax :

(cast_type *)malloc(Size_in_bytes);

realloc(): changes memory size that is already allocated to a variable.

Or

If the previously allocated memory is insufficient or more than required, you can change the
previously allocated memory size using realloc().

 If memory is not sufficient for malloc() or calloc(), you can reallocate the memory by
realloc() function. In short, it changes the memory size. By using realloc() we can create
the memory dynamically at middle stage. Generally by using realloc() we can
reallocation the memory. Realloc() required 2 arguments of type void*, size_type. Void*
will indicates previous block base address, size-type is data type size. Realloc() will
creates the memory in bytes format and initial value is garbage.

syntax

ptr=realloc(ptr, new-size)

Example

int *x;
x=(int*)malloc(50 * sizeof(int));

x=(int*)realloc(x,100); //allocated a new memory to variable x

malloc()

malloc() initializes the allocated memory with garbage
values.

Number of argument is 1

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 232

Example

void*realloc(void*, size-type);

int *arr;

arr=(int*)calloc(5, sizeof(int));

.....

........

....

arr=(int*)realloc(arr,sizeof(int)*10);

Example:
#include <stdio.h>

#include <stdlib.h>

int main()

{

int *ptr, i , n1, n2;

printf("Enter size of array: ");

scanf("%d", &n1);

ptr = (int*) malloc(n1 * sizeof(int));

printf("Address of previously allocated memory: ");

for(i = 0; i < n1; ++i)

printf("%u\t",ptr + i);

printf("\nEnter new size of array: ");

scanf("%d", &n2);

ptr = realloc(ptr, n2);

for(i = 0; i < n2; ++i)

printf("%u\t", ptr + i);

return 0;

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 233

free() When your program comes out, operating system automatically release all the

memory allocated
by your program but as a good practice when you are not in need of memory anymorethen you
should release that memory by calling the function free(). The memory occupied by

malloc() or calloc() functions must be released by calling free()
function. Otherwise, it will consume memory until program exit.
Or

Dynamically allocated memory created with either calloc() or malloc() doesn't get freed
on its own. You must explicitly use free() to release the space.
Syntax:

free(ptr);

Example

#include <stdio.h>

#include <stdlib.h>

int main()

{

int num, i, *ptr, sum = 0;

printf("Enter number of elements: ");

scanf("%d", &num);

ptr = (int*) malloc(num * sizeof(int)); //memory allocated using malloc

if(ptr == NULL)

{

printf("Error! memory not allocated.");

exit(0);

}

printf("Enter elements of array: ");

for(i = 0; i < num; ++i)

{

scanf("%d", ptr + i);

C PROGRAMMING Page 234

 sum += *(ptr + i);

}

printf("Sum = %d", sum);

free(ptr);

return 0;

}

It is possible to pass some values from the command line to your C programs when
they are executed. These values are called command line arguments and many times
they are important for your program especially when you want to control your program
from outside instead of hard coding those values inside the code.

The arguments passed from command line are called command line arguments. These

arguments
are handled by main() function.
To support command line argument, you need to change the structure of main() function

Syntax:

int main(int argc, char *argv[])

Here, argc counts the number of arguments. It counts the file name as the first argument.

The argv[] contains the total number of arguments. The first argument is the file name

always.
Example1

#include <stdio.h>

int main(int argc, char *argv[]) {

if(argc == 2) {

printf("The argument supplied is %s\n", argv[1]);

}

else if(argc > 2) {

printf("Too many arguments supplied.\n");

}

else {

printf("One argument expected.\n");

}

Command‐Line Arguments:

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 235

}

Output

Example2

#include <stdio.h>

void main(int argc, char *argv[]) {

printf("Program name is: %s\n", argv[0]);

if(argc < 2){

printf("No argument passed through command line.\n");

}

else{

printf("First argument is: %s\n", argv[1]);

}

}

Output

program.exe hello

Program name is: program

First argument is: hello

Note

But if you pass many arguments within double quote, all arguments will be treated as a single
argument only.
Example

./program "hello c how r u"
Program name is: program

First argument is: hello c how r u

You can write your program to print all the arguments. In this program, we are printing
only argv[1], that is why it is printing only one argument.

C PROGRAMMING Page 236

Example3

#include<stdio.h> #include<conio.h> void

main(int argc, char* argv[]) { int i; clrscr();

printf("Total number of arguments:

%d",argc); for(i=0;i< argc;i++)
{

printf("\n %d argument: %s",i,argv[i]);

getch();

}

}

Output

C:/TC/BIN>TCC mycmd.c

C:/TC/BIN>mycmd 10 20

Number of Arguments: 3
0 arguments c:/tc/bin/mycmd.exe

1 arguments: 10

2 arguments: 20

Note: In above output we passed two arguments but is show "Number of Arguments: 3"
because argc take Number of arguments in the command line including program name. So
here two arguments and one program name (mycmd.exe) total 3 arguments.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 237

Example4:

#include<stdio.h>

#include<conio.h>

void main(int argc, char* argv[])

{

clrscr();

printf("\n Program name : %s \n",

argv[0]); printf("1st arg : %s \n", argv[1]);

printf("2nd arg : %s \n", argv[2]);

printf("3rd arg : %s \n", argv[3]);

printf("4th arg : %s \n", argv[4]);

printf("5th arg : %s \n", argv[5]);

getch();
}

Output

C:/TC/BIN>TCC mycmd.c

C:/TC/BIN>mycmd this is a program

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 238

Program name : c:/tc/bin/mycmd.c

1st arg : this

2nd arg : is

3rd arg : a

4th arg : program

5th arg : (null)

Explanation: In the above example.

argc = 5

argv[0] = "mycmd"

argv[1] = "this"

argv[2] = "is"
argv[3] = "a"

argv[4] = "program"

argv[5] = NULL

Why command line arguments program not directly run form TC IDE

Command line arguments related programs are not execute directly from TC IDE because
arguments can not be passed.
Edit Command Line Argument Program

To Edit the Command Line Argument Program use edit Command.

Syntax

C:/cprogram>edit mycmd.c

Structure is a user defined data type which hold or store heterogeneous/different types data item
or element in a single variable. It is a Combination of primitive and derived data type.

or

STRUCTURES, UNIONS, ENUMERATIONS AND TYPEDEF

Structure Definition

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 239

A structure is a collection of one or more data items of different data types, grouped together
under a single name.

Variables inside the structure are called members of structure.

Each element of a structure is called a member.

struct keyword is used to define/create a structure. struct define a new data type which is a
collection of different type of data.
Syntax

struct structure_name /tag name

{

data_type member1;

data_type member2;

.

.

data_type member n;

};

Note: Don't forget the semicolon }; in the ending line.

Example

struct employee

{ int id;

char name[50];

float salary;

};

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 240

Here, struct is
structure; id, name and salary are the members or
understand it by the diagram given below:

the keyword, employee is the
fields

tag
of the

Syntax to create structure variable

struct tagname/structure_name variable;

Declaring structure variable

We can declare variable for the structure, so that we can access the member of structure easily.
There are two ways to declare structure variable:

1. By struct keyword within main() function/ Declaring Structure variables separately

2. By declaring variable at the time of defining structure/ Declaring Structure Variables
with Structure definition

1st way:

Let's see the example to declare structure variable by struct keyword. It should be declared
within the main function.

struct employee

{ int id;

name of
structure. Let's

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 241

structure variable can also be initialized at compile time.

struct Patient

{

float height;

int weight;

 char name[50];

float salary;

};

Now write given code inside the main() function.

struct employee e1, e2;

2nd way:

Let's see another way to declare variable at the time of defining structure.

struct employee

{ int id;

char name[50];

float salary;

}e1,e2;

Which approach is good

But if no. of variable are not fixed, use 1st approach. It provides you flexibility to declare the
structure variable many times.
If no. of variables are fixed, use 2nd approach. It saves your code to declare variable in main()
function.

Structure Initialization

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 242

 int age;

};

struct Patient p1 = { 180.75 , 73, 23 };

or

struct patient p1;

p1.height = 180.75;

p1.weight = 73;

p1.age = 23;

Accessing Structures/ Accessing members of structure

There are two ways to access structure members:

//initialization

//initialization of each member separately

1. By . (member or dot operator)

2. By -> (structure pointer operator)

When the variable is normal type then go for struct to member operator.

When the variable is pointer type then go for pointer to member operator.

Any member of a structure can be accessed as:

structure_variable_name.member_name

Example

struct book

{

char name[20];

char author[20];

int pages;

};

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 243

struct book b1;

for accessing the structure members from the above example

b1.name, b1.author, b1.pages:

Example

struct emp

{

int id;

char name[36];

int sal;

};

sizeof(struct emp) // --> 40 byte (2byte+36byte+2byte)

Example of Structure in C

#include<stdio.h>

#include<conio.h>

struct emp

{

int id;

char name[36];

float sal;

};

void main()

{

struct emp e;

clrscr();

printf("Enter employee Id, Name, Salary: ");

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 244

scanf("%d",&e.id);

scanf("%s",&e.name);

scanf("%f",&e.sal);

printf("Id: %d",e.id);

printf("\nName: %s",e.name);

printf("\nSalary: %f",e.sal);

getch();

}

Output

Output: Enter employee Id, Name, Salary: 5 Spidy 45000

Id : 05

Name: Spidy

Salary: 45000.00

Example

#include <stdio.h>

#include <string.h>

struct employee

{ int id;

char name[50];

}e1; //declaring e1 variable for structure

int main()

{

//store first employee information

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 245

 e1.id=101;

strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

//printing first employee information

printf("employee 1 id : %d\n", e1.id);

printf("employee 1 name : %s\n", e1.name);

return 0;

}

Output:

employee 1 id : 101

employee 1 name : Sonoo Jaiswal

Difference Between Array and Structure

Structure is the collection of
heterogeneous data.
Structure elements are access using .
operator.
Structures allocate dynamic memory.

Structure elements takes more time than
Array.

1 Array is collection of homogeneous data.

2 Array data are access using index.
3 Array allocates static memory.

Array element access takes less time than
structures. 4

structure can have another structure as a member. There are two ways to define nested structure
in c language:

1. By separate structure

2. By Embedded structure

1) Separate structure

We can create 2 structures, but dependent structure should be used inside the main structure as a
member. Let's see the code of nested structure.

Nested Structures

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 246

struct Date

{

int dd;

int mm;

int yyyy;

};

struct Employee

{

int id;

char name[20];

struct Date doj;

}emp1;

2) Embedded structure

struct Employee

{

int id;

char name[20];

struct Date

{

int dd;

int mm;

int yyyy;

}doj;

}emp1;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 247

Accessing Nested Structure

We can access the member of nested structure by Outer_Structure.Nested_Structure.member as
given below:

e1.doj.dd

e1.doj.mm

e1.doj.yyyy

Arrays of Structures

Array of structures to store much information of different data types. Each element of the

array
representing a structure variable. The array of structures is also known as collection of
structures. Ex : if you want to handle more records within one structure, we need not

specify the number of
structure variable. Simply we can use array of structure variable to store them in onestructure
variable. Example : struct employee emp[5]; Example of structure with array that stores

information of 5 students and prints it.

#include<stdio.h>

#include<conio.h>

#include<string.h>

struct student{

int rollno;

char name[10];

};

void main(){

int i;

struct student st[5];

clrscr();

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 248

printf("Enter Records of 5 students");

for(i=0;i<5;i++){

printf("\nEnter Rollno:");

scanf("%d",&st[i].rollno);

printf("\nEnter Name:");

scanf("%s",&st[i].name);

}

printf("\nStudent Information List:");

for(i=0;i<5;i++){

printf("\nRollno:%d, Name:%s",st[i].rollno,st[i].name);

}

getch();

}

Output:

Enter Records of 5 students

Enter Rollno:1

Enter Name:Sonoo

Enter Rollno:2

Enter Name:Ratan

Enter Rollno:3

Enter Name:Vimal

Enter Rollno:4

Enter Name:James

Enter Rollno:5

Enter Name:Sarfraz

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 249

Student Information List:

Rollno:1, Name:Sonoo

Rollno:2, Name:Ratan

Rollno:3, Name:Vimal

Rollno:4, Name:James

Rollno:5, Name:Sarfraz

Structures and Functions
A structure can be passed as a function argument just like any other variable. This raises a few
practical issues.

PASSING STRUCTURE TO FUNCTION IN C:

It can be done in below 3 ways.

1. Passing structure to a function by value

2. Passing structure to a function by address(reference)

3. No need to pass a structure – Declare structure variable as global

.

The general format of sending a copy of a structure to the called function is:

Function_name(structure_variable_name);

The called function takes the following form:

data_type function_name(struct tag_name var)

{

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 250

 ---------- ---

return(exp);

}

PASSING STRUCTURE TO FUNCTION IN C BY VALUE:

#include <stdio.h>

#include <string.h>

struct student

{

int id;

char name[20];

float percentage;

};

void func(struct student record);

int main()

{

struct student record;

record.id=1;

strcpy(record.name, "Raju");

record.percentage = 86.5;

func(record);

return 0;

}

void func(struct student record)

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 251

{

printf(" Id is: %d \n", record.id);

printf(" Name is: %s \n", record.name);

printf(" Percentage is: %f \n", record.percentage);

}

Output

Id is: 1

Name is: Raju

Percentage is: 86.500000

PASSING STRUCTURE TO FUNCTION IN C BY ADDRESS:

#include <stdio.h>

#include <string.h>

struct student

{

int id;

char name[20];

float percentage;

};

void func(struct student *record);

int main()

{

struct student record;

record.id=1;

strcpy(record.name, "Raju");

record.percentage = 86.5;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 252

 func(&record);

return 0;

}

void func(struct student *record)

{

printf(" Id is: %d \n", record->id);

printf(" Name is: %s \n", record->name);

printf(" Percentage is: %f \n", record->percentage);

}

EXAMPLE PROGRAM TO DECLARE A STRUCTURE VARIABLE AS GLOBAL IN
C:
#include <stdio.h>

#include <string.h>

struct student

{

int id;

char name[20];

float percentage;

};

struct student record; // Global declaration of structure

void structure_demo();

int main()

{

record.id=1;

C PROGRAMMING Page 253

 strcpy(record.name, "Raju");

record.percentage = 86.5;

structure_demo();

return 0;

}

void structure_demo()

{

printf(" Id is: %d \n", record.id);

printf(" Name is: %s \n", record.name);

printf(" Percentage is: %f \n", record.percentage);

}

Passing a copy of entire structure to a function

struct std

{

int no;

float avg;

};

struct std a;

void fun(struct std p);

void main()

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 254

Example

#include <stdio.h>

#include <string.h>

struct student

{

int id;

char name[30];

float percentage;

{

clrscr();

a.no=12;

a.avg=13.76;

fun(a);

getch();

}

void fun(struct std p)

{

printf("number is%d\n",p.no);

printf("average is%f\n",p.avg);

}

Passing Structures through Pointers TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 255

};

int main()

{

int i;

struct student record1 = {1, "Raju", 90.5};

struct student *ptr;

ptr = &record1;

printf("Records of STUDENT1: \n");

printf(" Id is: %d \n", ptr->id);

printf(" Name is: %s \n", ptr->name);

printf(" Percentage is: %f \n\n", ptr->percentage);

return 0;

}

OUTPUT:

Records
Id
Name is: Raju

of
is:

Percentage is: 90.500000

A structure consists of at least a pointer member pointing to the same structure is
known as a self-referential structure. A self referential structure is used to create data
structures like linked lists, stacks, etc. Following is an example of this kind of structure:

STUDENT1:
1

Self‐referential Structures

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 256

A union is a special data type available in C that allows to store different data types in the same
memory location.

A self-referential structure is one of the data structures which refer to the pointer to
(points) to another structure of the same type. For example, a linked list is supposed to
be a self-referential data structure. The next node of a node is being pointed, which is of
the same struct type. For example,

Syntax : struct tag_name

{

type member1;

type membere2;

:

:

:

:

typeN memberN;

struct tag_name *name;

}

Where *name refers to the name of a pointer variable.

Ex:

struct emp

{

int code;

struct emp *name;

}

Unions

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 257

Unions are conceptually similar to structures. The syntax of union is also similar to that of
structure. The only difference is in terms of storage. In structure each member has its own
storage location, whereas all members of union use a single shared memory location
which is equal to the size of its largest data member.

We can access only one member of union at a time. We can‟t access all member values

at the
same time in union. But, structure can access all member values at the same time. This is
because, Union allocates one common storage space for all its members. Where as

Structure
allocates storage space for all its members separately.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 258

 union employee

{ int id;

char name[50];

float salary;

};

 Example

syntax

union union_name

{

data_type

member1;

data_type

member2;

.

.

data_type memeberN;

};

Example

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 259

#include <stdio.h>

#include <conio.h>

union item

#include <stdio.h>

#include <string.h>

union employee

{ int id;

char name[50];

}e1; //declaring e1 variable for union

int main()

{

//store first employee information

e1.id=101;

strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

//printing first employee information

printf("employee 1 id : %d\n", e1.id);

printf("employee 1 name : %s\n", e1.name);

return 0;

}

Output:

employee 1 id : 1869508435

employee 1 name : Sonoo Jaiswal

As you can see, id gets garbage value because name has large memory size. So only name will
have actual value.
 Example

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 260

{

int a;

float b;

char ch;

};

int main()

{

union item it;

it.a = 12;

it.b = 20.2;

it.ch='z';

clrscr();

printf("%d\n",it.a);

printf("%f\n",it.b);

printf("%c\n",it.ch);

getch();

return 0;

} Output -26426 20.1999 z As you can see here, the values of a and b get corrupted and

only variable c prints the expected
result. Because in union, the only member whose value is currently stored will have thememory.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 261

type

width

member_name The name of the bit-field.

struct {

type [member_name] : width ;

};

The following table describes the variable elements of a bit field −

Elements Description

The number of bits in the bit-field. The width must be less than or equal
to the bit width of the specified type.

An integer type that determines how a bit-field's value is interpreted.
The type may be int, signed int, or unsigned int.

Difference between Structure and Union

Structure Union

For defining structure use
struct keyword.

1 For defining union we use union keyword

Structure occupies more 2 Union occupies less memory space than Structure. memory space than union.

In Structure we can access
3 all members of structure at a In union we can access only one member of union at a time.

time.

Bit‐Fields

Syntax

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 262

The variables defined with a predefined width are called bit fields. A bit field can hold more
than a single bit; for example, if you need a variable to store a value from 0 to 7, thenyou can
define a bit field with a width of 3 bits as follows − struct {

unsigned int age : 3;

} Age; The above structure definition instructs the C compiler that the age variable is going

to use only
3 bits to store the value. If you try to use more than 3 bits, then it will not allow you to doso. Let
us try the following example – #include <stdio.h> #include <string.h> struct {

unsigned int age : 3;

} Age;

int main() {

Age.age = 4;

printf("Sizeof(Age) : %d\n", sizeof(Age));

printf("Age.age : %d\n", Age.age);

Age.age = 7;

printf("Age.age : %d\n", Age.age);

Age.age = 8;

printf("Age.age : %d\n", Age.age);

return 0;

}

Output

Sizeof(Age) : 4

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 263

Age.age : 4

Age.age : 7

Age.age : 0

typedef
The typedef is a keyword that allows the programmer to create a new data type name for an
existing data type. So, the purpose of typedef is to redefine the name of an existing variable type.

Syntax

typedef datatype alias_name;

Example of typedef

#include<stdio.h>

#include<conio.h>

typedef int Intdata; // Intdata is alias name of int

void main()

{

int a=10;

Integerdata b=20;

typedef Intdata Integerdata; // Integerdata is again alias name of Intdata

Integerdata s;

clrscr();

s=a+b;

printf("\n Sum:= %d",s);

getch();

}

Output

Sum: 20

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 264

Advantages of typedef :

1 : Provides a meaningful way of declaring the variable.

2 : Increase the readability of the program.

#include<stdio.h>

#include<conio.h>

void main()

{

typedef int digits;

digits a,b,sum;

clrscr();

printf("Enter a and b values:");

scanf("%d%d",&a,&b);

sum=a+b;

printf("The sum is:%d",sum);

getch();

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 265

Note: By using typedef only we can create the alias name and it is under control of compiler.

Application of typedef

typedef can be used to give a name to user defined data type as well. Lets see its use with
structures.
typedef struct

{

type member1;

type member2;

type member3;

} type_name ;

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 266

Here type_name represents the stucture definition associated with it. Now this type_name can
be used to declare a variable of this stucture type.

type_name t1, t2 ;

Example of structure definition using typedef

#include<stdio.h>

#include<conio.h>

#include<string.h>

typedef struct employee

{

char name[50];

int salary;

} emp ;

void main()

{

emp e1;

printf("\nEnter Employee record\n");

printf("\nEmployee name\t");

scanf("%s",e1.name);

printf("\nEnter Employee salary \t");

scanf("%d",&e1.salary);

printf("\nstudent name is %s",e1.name);

printf("\nroll is %d",e1.salary);

getch();

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 267

An enum is a keyword, it is an user defined data type. All properties of integer are applied on
Enumeration data type so size of the enumerator data type is 2 byte. It work like the Integer.

It is used for creating an user defined data type of integer. Using enum we can create sequence of
integer constant value.
Syntax

enum tagname {value1, value2, value3,....};







In above syntax enum is a keyword. It is a user defiend data type.

In above syntax tagname is our own variable. tagname is any variable name.

value1, value2, value3,.... are create set of enum values.

typedef and Pointers

typedef can be used to give an alias name to pointers also. Here we have a case in which use of
typedef is beneficial during pointer declaration.
In Pointers * binds to the right and not the left.

int* x, y ;

By this declaration statement, we are actually declaring x as a pointer of type int, whereas y will
be declared as a plain integer.
typedef int* IntPtr ;

IntPtr x, y, z;

But if we use typedef like in above example, we can declare any number of pointers in a single
statement.
NOTE : If you do not have any prior knowledge of pointers, do study Pointers first.

 Enumerations

C PROGRAMMING Page 268

It is start with 0 (zero) by default and value is incremented by 1 for the sequential identifiers in
the list. If constant one value is not initialized then by default sequence will be start from zero
and next to generated value should be previous constant value one.

Example of Enumeration in C

#include<stdio.h>

#include<conio.h>

enum ABC {x,y,z};

void main()

{

int a;

clrscr();

a=x+y+z; //0+1+2

printf("Sum: %d",a);

getch();

}

Output

Sum: 3

Example of Enumeration in C

#include<stdio.h>

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 269

#include<conio.h>

enum week {sun, mon, tue, wed, thu, fri, sat};

void main()

{

enum week today;

today=tue;

printf("%d day",today+1);

getch();

}

Output

3 day

Example of Enumeration in C

#include<stdio.h>

#include<conio.h>

enum week {sun, mon, tue, wed, thu, fri, sat};

void main()

{

for(i=sun; i<=sat; i++)

{

printf("%d ",i);

}

getch();

}

Output

In above code replace sun, mon, tue,.... with Equivalent numeric value 0, 1, 2,...

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 270

FILE

File is a collection of bytes that is stored on secondary storage devices like Hard disk.

OR

A file represents a sequence of bytes on the disk where a group of related data is stored. File is
created for permanent storage of data. It is a ready made structure.
Note:

Why files are needed?

 When a program is terminated, the entire data is lost. Storing in a file will preserve your
data even if the program terminates.
If you have to enter a large number of data, it will take a lot of time to enter them all.
However, if you have a file containing all the data, you can easily access the contents of
the file using few commands in C.

You can easily move your data from one computer to another without any changes.





File I/O:-

Sometimes it is necessary to store the data in a manner that can be later retrieved and displayed
either in a part or in whole. This medium is usually a “file” on the disk. File I/O can be handled
by using different functions.

a) Formatted functions:- The file input function fscanf() and the file output function fprintf()
are called formatted file I/O functions.
b)Unformatted functions:- The input functions like getc(), getw(), and fread() are called
unformatted file input functions and putc(), putw(), and fwrite() functions are unformatted file
output functions. Each and every function is having its own syntax and meaning.

File streams:- Stream is either reading or writing of data. The streams are designed to allow the
user to access the files efficiently. A stream is a file or physical device like key board, printer,
monitor, etc., The FILE object uses these devices. When a C program is started, the operating
system is responsible for opening three streams: standard input stream (stdin), standard output
stream (stdout), standard error(stderr).Normally the stdin is connected to the keyboard, the
stdout and stderr are connected to the monitor.
 Files

C PROGRAMMING Page 271

In C, you can perform four major operations on the file, either text or binary:







Naming a file/Creation of new file

Opening an existing file

Reading data from file

 Writing data into file

 Closing a file

Steps for processing a file
 Declare a file pointer
 open a file using fopen() function
 Process the file using suitable file functions.
 close the file using fclose() function.

All files related function are available in stdio.h header file.

Types of Files

When dealing with files, there are two types of files you should know about:

1. Text files

2. Binary files

1. Text files

Text files are the normal .txt files that you can easily create using Notepad or any simple text
editors.
When you open those files, you'll see all the contents within the file as plain text. You can easily
edit or delete the contents.
They take minimum effort to maintain, are easily readable, and provide least security and takes
bigger storage space.
2. Binary files

Binary files are mostly the .bin files in your computer.

Instead of storing data in plain text, they store it in the binary form (0's and 1's).

They can hold higher amount of data, are not readable easily and provides a better security than
text files.

File Operations

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 272

Mode

r

w

a

r+

w+

a+

rb

Description

opens a text file in read mode

opens a text file in write mode

opens a text file in append mode

opens a text file in read and write mode

opens a text file in read and write mode

opens a text file in read and write mode

opens a binary file in read mode

Declaration of a file When working with files, you need to declare a pointer of type file.

This declaration is needed
for communication between the file and program.
Syntax

FILE *fp;

Opening a file - for creation and edit

The fopen() function is used to create a new file or to open an existing file.

General Syntax :

fp = fopen("fileopen","mode")

For Example:

fopen("E:\\cprogram\\newprogram.txt","w");

fopen("E:\\cprogram\\oldprogram.bin","rb");

Closing a File

The file (both text and binary) should be closed after reading/writing.

Closing a file is performed using library function fclose().

fclose(fptr); //fptr is the file pointer associated with file to be closed.

File Opening Modes

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 273

wb opens a binary file in write mode

ab opens a binary file in append mode

rb+ opens a binary file in read and write mode

wb+ opens a binary file in read and write mode

ab+ opens a binary file in read and write mode

Difference between Append and Write Mode

Write (w) mode and Append (a) mode, while opening a file are almost the same. Both are used to
write in a file. In both the modes, new file is created if it doesn't exists already.

The only difference they have is, when you open a file in the write mode, the file is reset,
resulting in deletion of any data already present in the file. While in append mode this will not
happen. Append mode is used to append or add data to the existing data of file(if any). Hence,
when you open a file in Append(a) mode, the cursor is positioned at the end of the present data in
the file.

Formatted File I/O Functions

Syntax of fprintf is

fprintf (fp, “control string”, list);

Example: fprintf(fp1, “%s %d”, name, age);

Syntax of fscanf is,

fscanf(fp, “control string”, list);

Example: fscanf(fp, “%s %d”, name, & age);

Note:
 fscanf is used to read list of items from a file
 fprintf is used to write a list of items to a file.

Note:

EOF – End of file (when EOF encountered the reading / writing should be terminated)

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 274

Example:

#include <stdio.h>

main(){

FILE *fp;

fp = fopen("file.txt", "w");//opening file

fprintf(fp, "Hello file by fprintf...\n");//writing data into file

fclose(fp);//closing file

}

Example 1: Write to a text file using fprintf()

#include <stdio.h>

int main()

{

int num;

FILE *fptr;

fptr = fopen("C:\\program.txt","w");

if(fptr == NULL)

{

printf("Error!");

exit(1);

}

printf("Enter num: ");

scanf("%d",&num);

fprintf(fptr,"%d",num);

fclose(fptr);

return 0;

}

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 275

S.No Function Operation

1 getc() Read a character from a file

2 putc() Write a character in file

Example 2: Read from a text file using fscanf()

#include <stdio.h>

int main()

{

int num;

FILE *fptr;

if ((fptr = fopen("C:\\program.txt","r")) == NULL){

printf("Error! opening file");

// Program exits if the file pointer returns NULL.

exit(1);

}

fscanf(fptr,"%d", &num);

printf("Value of n=%d", num);

fclose(fptr);

return 0;

}

Syntax

getc(fp)

putc(c, fp)

Input/Output Operation on files

To perform Input/Output Operation on files we need below functions.

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 276

3

4

5

6

fprintf()

fscanf()

getw()

putw()

To write set of data in file

To read set of data from file.

To read an integer from a file.

To write an integer in file.

fprintf(fp, "control string", list)

fscanf(fp, "control string", list)

getw(fp)

putw(integer, fp)

fgetc() function

The fgetc() function returns/read a single character from the file. It gets a character from the
stream. It returns EOF at the end of file.

Unformatted File I/O Functions

fputc() function

The fputc() function is used to write a single character into file.

putc ():-Putting a character in to the file. It works with only character data type. One character
at a time can write into a file.
Ex: char ch =‟a‟;

putc (ch, fp);

Example:

#include <stdio.h>

main(){

FILE *fp;

fp = fopen("file1.txt", "w");//opening file

fputc('a',fp);//writing single character into file

fclose(fp);//closing file

}

file1.txt

a

C PROGRAMMING Page 277

getc (): getting a character from the file, or reading the file information character by character at
a time, upto the end of the file by using this function.

Ex: char ch;

ch = getc (fp);

Example:
#include<stdio.h>
#include<conio.h>

void main(){

FILE *fp;

char c;

clrscr();

fp=fopen("myfile.txt","r");

while((c=fgetc(fp))!=EOF){

printf("%c",c);

}

fclose(fp);

getch();

}

myfile.txt

this is simple text message

fputs()

The fputs() function writes a line of characters into file

Example:

#include<stdio.h>

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 278

#include<conio.h>

void main(){

FILE *fp;

clrscr();

fp=fopen("myfile2.txt","w");

fputs("hello c programming",fp);

fclose(fp);

getch();

}

myfile2.txt

hello c programming

fgets()

The fgets() function reads a line of characters from file.

Example:

#include<stdio.h>

#include<conio.h>

void main(){

FILE *fp;

char text[300];

clrscr();

fp=fopen("myfile2.txt","r");

printf("%s",fgets(text,200,fp));

fclose(fp);

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 279

getch();

}

Output:

hello c programming

The getw and putw functions:

These are integer oriented functions. These are similar to above functions and are used to read
and write integer values. These are useful when we deal with only integer data. The general
format is

putw (): putting or writing of an integer value to a file.

putw (integer , fp);

Ex: int x = 5;

putw(x,fp);

getw (): getting or reading integer value from a file.

Ex: int x;

x = getw (fp);

fseek()

The fseek() function is used to set the file pointer to the specified offset. It is used to write data
into file at desired location.
syntax:

fseek(FILE * stream, long int offset, int whence)

File Positioning Functions

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 280

Different Whence in fseek

The first parameter stream is the pointer to the file. The second parameter is the position of the
record to be found, and the third parameter specifies the location where the offset starts.

Whence Meaning

SEKK_SET

SEKK_END

Starts the offset from the beginning of the file.

Starts the offset from the end of the file.

SEKK_CUR Starts the offset from the current location of the cursor in the file.

or

fseek(file pointer, offset, position);

 file pointer is a pointer to the concerned file.

 Offset is a number or variable of type long, it specifies the number of positions (bytes) to
be moved from the location specified. If offset is positive number, then moving forward
or negative meaning move backwards.

 Position is a n integer number and it specifies from which position the file pointer to be
moved. Position can take one of the following three values.

0
1
2

beginning of file
current position
end of file

Eg: fseek (fp, 0L,0);
fseek (fp, 0L,1);
fseek (fp, 0L,2);

-
-

go to the beginning of the file. (Similar to rewind).
Stay at current position (Rarely used)

-go to the end of the file, past the last character of the file.

Example:

#include <stdio.h>

void main(){

C PROGRAMMING Page 281

 FILE *fp;

fp = fopen("myfile.txt","w+");

fputs("This is javatpoint", fp);

fseek(fp, 7, SEEK_SET);

fputs("sonoo jaiswal", fp);

fclose(fp);

}

myfile.txt

This is sonoo jaiswal

rewind()

This function places the file pointer to the beginning of the file, irrespective of where it is present
right now. It takes file pointer as an argument.
Syntax:

rewind(fp);

Example:

File: file.txt

this is a simple text

Example:

#include<stdio.h>

#include<conio.h>

void main(){

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 282

FILE *fp;

char c;

clrscr();

fp=fopen("file.txt","r");

while((c=fgetc(fp))!=EOF){

printf("%c",c);

}

rewind(fp);//moves the file pointer at beginning of the file

while((c=fgetc(fp))!=EOF){

printf("%c",c);

}

fclose(fp);

getch();

}

Output:

this is a simple textthis is a simple text

As you can see, rewind() function moves the file pointer at beginning of the file that is why "this
is simple text" is printed 2 times. If you don't call rewind() function, "this is simple text" will be
printed only once.

ftell()

The ftell() function returns the current file position of the specified stream. We can use ftell()
function to get the total size of a file after moving file pointer at the end of file. We can use
SEEK_END constant to move the file pointer at the end of file.

syntax:

n = ftell(fp);

n would give the relative offset(in bytes).

TechByWebCoder

@techbywebcoder

C PROGRAMMING Page 283

getw ()

fopen ()

fclose () fclose () function closes an opened file.

getw () function reads an integer from file.

fopen () function creates a new file or opens
an existing file.

Example:

#include <stdio.h>

#include <conio.h>

void main (){

FILE *fp;

int length;

clrscr();

fp = fopen("file.txt", "r");

fseek(fp, 0, SEEK_END);

length = ftell(fp);

fclose(fp);

printf("Size of file: %d bytes", length);

getch();

}

Output:

Size of file: 21 bytes

INBUILT FUNCTIONS FOR FILE HANDLING IN C LANGUAGE:

File
handling functions Description

TechByWebCoder

@techbywebcoder

http://fresh2refresh.com/c-programming/c-file-handling/getw-putw-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/getw-putw-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fopen-fclose-gets-fputs-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fopen-fclose-gets-fputs-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fopen-fclose-gets-fputs-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fopen-fclose-gets-fputs-functions-c/

C PROGRAMMING Page 284

gets ()

feof ()

puts ()

fgets ()

fgetc ()

putw ()

fputs ()

fputc ()

fseek ()

fscanf ()

fprintf ()

fgetchar ()

fputchar ()

SEEK_SET

feof () function finds end of file.

fputs () function writes string to a file.

puts () function writes line to o/p screen.

gets () function reads line from keyboard.

putw () functions writes an integer to file.

fputc () functions write a character to file.

fgetchar () function reads a character from
keyboard.

fputchar () function writes a character onto
the output screen from keyboard input.

fgetc () function reads a character from file.

fprintf () function writes formatted data to a
file.

fseek () function moves file pointer position
to given location.

fgets () function reads string from a file, one
line at a time.

fscanf () function reads formatted data from a
file.

SEEK_SET moves file pointer position to the
beginning of the file.

TechByWebCoder

@techbywebcoder

http://fresh2refresh.com/c-programming/c-file-handling/fopen-fclose-gets-fputs-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fopen-fclose-gets-fputs-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/feof-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/feof-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/puts-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/puts-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/fgets-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/fgets-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/fgetc-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/fgetc-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/getw-putw-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/getw-putw-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fopen-fclose-gets-fputs-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fopen-fclose-gets-fputs-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fputc-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/fputc-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/fseek-seek_set-seek_cur-seek_end-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fseek-seek_set-seek_cur-seek_end-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fscanf-fprintf-ftell-rewind-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fscanf-fprintf-ftell-rewind-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fscanf-fprintf-ftell-rewind-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fscanf-fprintf-ftell-rewind-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fgetchar-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/fgetchar-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/fputchar-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/fputchar-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/fseek-seek_set-seek_cur-seek_end-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fseek-seek_set-seek_cur-seek_end-functions-c/

C PROGRAMMING Page 285

ftell ()

getc ()

putc ()

scanf ()

getch ()

printf ()

sprinf ()

getche ()

rewind ()

getchar ()

putchar ()

SEEK_END

SEEK_CUR

getch () function reads character from
keyboard.

getche () function reads character from
keyboard and echoes to o/p screen.

putchar () function writes a character to
screen.

getchar () function reads character from
keyboard.

putc () function writes a character to file.

getc () function reads character from file.

printf () function writes formatted data to
screen.

SEEK_CUR moves file pointer position to
given location.

SEEK_END moves file pointer position to
the end of file.

scanf () function reads formatted data from

sprinf () function writes formatted output to
string.

ftell () function gives current position of file
pointer.

rewind () function moves file pointer position
to the beginning of the file.

http://fresh2refresh.com/c-programming/c-file-handling/fscanf-fprintf-ftell-rewind-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fscanf-fprintf-ftell-rewind-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/getc-putc-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/getc-putc-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/getc-putc-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/getc-putc-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/printf-scanf-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/printf-scanf-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/getch-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/getch-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/printf-scanf-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/printf-scanf-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/sprintf-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/sprintf-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/getche-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/getche-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/fscanf-fprintf-ftell-rewind-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fscanf-fprintf-ftell-rewind-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/putchar-getchar-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/putchar-getchar-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/putchar-getchar-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/putchar-getchar-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/fseek-seek_set-seek_cur-seek_end-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fseek-seek_set-seek_cur-seek_end-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fseek-seek_set-seek_cur-seek_end-functions-c/
http://fresh2refresh.com/c-programming/c-file-handling/fseek-seek_set-seek_cur-seek_end-functions-c/

C PROGRAMMING Page 286

fflush ()

sscanf ()

remove ()

keyboard.

fflush () function flushes a file.

remove () function deletes a file.

sscanf () function Reads formatted input from
a string.

TechByWebCoder

@techbywebcoder

http://fresh2refresh.com/c-programming/c-file-handling/fflush-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/fflush-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/sscanf-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/sscanf-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/remove-function-c/
http://fresh2refresh.com/c-programming/c-file-handling/remove-function-c/

